/usr/share/octave/packages/signal-1.3.2/grpdelay.m is in octave-signal 1.3.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 | ## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
## Copyright (C) 2004 Julius O. Smith III <jos@ccrma.stanford.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {[@var{g}, @var{w}] =} grpdelay (@var{b})
## @deftypefnx {Function File} {[@var{g}, @var{w}] =} grpdelay (@var{b}, @var{a})
## @deftypefnx {Function File} {[@var{g}, @var{w}] =} grpdelay (@dots{}, @var{n})
## @deftypefnx {Function File} {[@var{g}, @var{w}] =} grpdelay (@dots{}, @var{n}, "whole")
## @deftypefnx {Function File} {[@var{g}, @var{f}] =} grpdelay (@dots{}, @var{n}, @var{Fs})
## @deftypefnx {Function File} {[@var{g}, @var{f}] =} grpdelay (@dots{}, @var{n}, "whole", @var{Fs})
## @deftypefnx {Function File} {[@var{g}, @var{w}] =} grpdelay (@dots{}, @var{w})
## @deftypefnx {Function File} {[@var{g}, @var{f}] =} grpdelay (@dots{}, @var{f}, @var{Fs})
## @deftypefnx {Function File} {} grpdelay (@dots{})
## Compute the group delay of a filter.
##
## [g, w] = grpdelay(b)
## returns the group delay g of the FIR filter with coefficients b.
## The response is evaluated at 512 angular frequencies between 0 and
## pi. w is a vector containing the 512 frequencies.
## The group delay is in units of samples. It can be converted
## to seconds by multiplying by the sampling period (or dividing by
## the sampling rate fs).
##
## [g, w] = grpdelay(b,a)
## returns the group delay of the rational IIR filter whose numerator
## has coefficients b and denominator coefficients a.
##
## [g, w] = grpdelay(b,a,n)
## returns the group delay evaluated at n angular frequencies. For fastest
## computation n should factor into a small number of small primes.
##
## [g, w] = grpdelay(b,a,n,'whole')
## evaluates the group delay at n frequencies between 0 and 2*pi.
##
## [g, f] = grpdelay(b,a,n,Fs)
## evaluates the group delay at n frequencies between 0 and Fs/2.
##
## [g, f] = grpdelay(b,a,n,'whole',Fs)
## evaluates the group delay at n frequencies between 0 and Fs.
##
## [g, w] = grpdelay(b,a,w)
## evaluates the group delay at frequencies w (radians per sample).
##
## [g, f] = grpdelay(b,a,f,Fs)
## evaluates the group delay at frequencies f (in Hz).
##
## grpdelay(...)
## plots the group delay vs. frequency.
##
## If the denominator of the computation becomes too small, the group delay
## is set to zero. (The group delay approaches infinity when
## there are poles or zeros very close to the unit circle in the z plane.)
##
## Theory: group delay, g(w) = -d/dw [arg@{H(e^jw)@}], is the rate of change of
## phase with respect to frequency. It can be computed as:
##
## @example
## d/dw H(e^-jw)
## g(w) = -------------
## H(e^-jw)
## @end example
##
## where
##
## @example
## H(z) = B(z)/A(z) = sum(b_k z^k)/sum(a_k z^k).
## @end example
##
## By the quotient rule,
##
## @example
## A(z) d/dw B(z) - B(z) d/dw A(z)
## d/dw H(z) = -------------------------------
## A(z) A(z)
## @end example
##
## Substituting into the expression above yields:
##
## @example
## A dB - B dA
## g(w) = ----------- = dB/B - dA/A
## A B
## @end example
##
## Note that,
##
## @example
## d/dw B(e^-jw) = sum(k b_k e^-jwk)
## d/dw A(e^-jw) = sum(k a_k e^-jwk)
## @end example
##
## which is just the FFT of the coefficients multiplied by a ramp.
##
## As a further optimization when nfft>>length(a), the IIR filter (b,a)
## is converted to the FIR filter conv(b,fliplr(conj(a))).
## For further details, see
## http://ccrma.stanford.edu/~jos/filters/Numerical_Computation_Group_Delay.html
## @end deftypefn
function [gd, w] = grpdelay (b, a = 1, nfft = 512, whole, Fs)
if (nargin < 1 || nargin > 5)
print_usage ();
endif
HzFlag = false;
if (length (nfft) > 1)
if (nargin > 4)
print_usage ();
elseif (nargin > 3)
## grpdelay (B, A, F, Fs)
Fs = whole;
HzFlag = true;
else
## grpdelay (B, A, W)
Fs = 1;
endif
w = 2*pi*nfft/Fs;
nfft = length (w) * 2;
whole = "";
else
if (nargin < 5)
Fs = 1; # return w in radians per sample
if (nargin < 4)
whole = "";
elseif (! ischar (whole))
Fs = whole;
HzFlag = true;
whole = "";
endif
if (nargin < 3)
nfft = 512;
endif
if (nargin < 2)
a = 1;
endif
else
HzFlag = true;
endif
if (isempty (nfft))
nfft = 512;
endif
if (! strcmp (whole, "whole"))
nfft = 2*nfft;
endif
w = Fs*[0:nfft-1]/nfft;
endif
if (! HzFlag)
w = w * 2 * pi;
endif
## Make sure both are row vector
a = a(:).';
b = b(:).';
oa = length (a) -1; # order of a(z)
if (oa < 0) # a can be []
a = 1;
oa = 0;
endif
ob = length (b) -1; # order of b(z)
if (ob < 0) # b can be [] as well
b = 1;
ob = 0;
endif
oc = oa + ob; # order of c(z)
c = conv (b, fliplr (conj (a))); # c(z) = b(z)*conj(a)(1/z)*z^(-oa)
cr = c.*(0:oc); # cr(z) = derivative of c wrt 1/z
num = fft (cr, nfft);
den = fft (c, nfft);
minmag = 10*eps;
polebins = find (abs (den) < minmag);
for b = polebins
warning ("grpdelay: setting group delay to 0 at singularity");
num(b) = 0;
den(b) = 1;
## try to preserve angle:
## db = den(b);
## den(b) = minmag*abs(num(b))*exp(j*atan2(imag(db),real(db)));
## warning(sprintf('grpdelay: den(b) changed from %f to %f',db,den(b)));
endfor
gd = real (num ./ den) - oa;
if (! strcmp (whole, "whole"))
ns = nfft/2; # Matlab convention ... should be nfft/2 + 1
gd = gd(1:ns);
w = w(1:ns);
else
ns = nfft; # used in plot below
endif
## compatibility
gd = gd(:);
w = w(:);
if (nargout == 0)
unwind_protect
grid ("on"); # grid() should return its previous state
if (HzFlag)
funits = "Hz";
else
funits = "radian/sample";
endif
xlabel (["Frequency (" funits ")"]);
ylabel ("Group delay (samples)");
plot (w(1:ns), gd(1:ns), ";;");
unwind_protect_cleanup
grid ("on");
end_unwind_protect
endif
endfunction
## ------------------------ DEMOS -----------------------
%!demo % 1
%! %--------------------------------------------------------------
%! % From Oppenheim and Schafer, a single zero of radius r=0.9 at
%! % angle pi should have a group delay of about -9 at 1 and 1/2
%! % at zero and 2*pi.
%! %--------------------------------------------------------------
%! grpdelay([1 0.9],[],512,'whole',1);
%! hold on;
%! xlabel('Normalized Frequency (cycles/sample)');
%! stem([0, 0.5, 1],[0.5, -9, 0.5],'*b;target;');
%! hold off;
%! title ('Zero at z = -0.9');
%!
%!demo % 2
%! %--------------------------------------------------------------
%! % confirm the group delays approximately meet the targets
%! % don't worry that it is not exact, as I have not entered
%! % the exact targets.
%! %--------------------------------------------------------------
%! b = poly([1/0.9*exp(1i*pi*0.2), 0.9*exp(1i*pi*0.6)]);
%! a = poly([0.9*exp(-1i*pi*0.6), 1/0.9*exp(-1i*pi*0.2)]);
%! grpdelay(b,a,512,'whole',1);
%! hold on;
%! xlabel('Normalized Frequency (cycles/sample)');
%! stem([0.1, 0.3, 0.7, 0.9], [9, -9, 9, -9],'*b;target;');
%! hold off;
%! title ('Two Zeros and Two Poles');
%!demo % 3
%! %--------------------------------------------------------------
%! % fir lowpass order 40 with cutoff at w=0.3 and details of
%! % the transition band [.3, .5]
%! %--------------------------------------------------------------
%! subplot(211);
%! Fs = 8000; % sampling rate
%! Fc = 0.3*Fs/2; % lowpass cut-off frequency
%! nb = 40;
%! b = fir1(nb,2*Fc/Fs); % matlab freq normalization: 1=Fs/2
%! [H,f] = freqz(b,1,[],1);
%! [gd,f] = grpdelay(b,1,[],1);
%! plot(f,20*log10(abs(H)));
%! title(sprintf('b = fir1(%d,2*%d/%d);',nb,Fc,Fs));
%! xlabel('Normalized Frequency (cycles/sample)');
%! ylabel('Amplitude Response (dB)');
%! grid('on');
%! subplot(212);
%! del = nb/2; % should equal this
%! plot(f,gd);
%! title(sprintf('Group Delay in Pass-Band (Expect %d samples)',del));
%! ylabel('Group Delay (samples)');
%! axis([0, 0.2, del-1, del+1]);
%!demo % 4
%! %--------------------------------------------------------------
%! % IIR bandstop filter has delays at [1000, 3000]
%! %--------------------------------------------------------------
%! Fs = 8000;
%! [b, a] = cheby1(3, 3, 2*[1000, 3000]/Fs, 'stop');
%! [H,f] = freqz(b,a,[],Fs);
%! [gd,f] = grpdelay(b,a,[],Fs);
%! subplot(211);
%! plot(f,abs(H));
%! title('[b,a] = cheby1(3, 3, 2*[1000, 3000]/Fs, "stop");');
%! xlabel('Frequency (Hz)');
%! ylabel('Amplitude Response');
%! grid('on');
%! subplot(212);
%! plot(f,gd);
%! title('[gd,f] = grpdelay(b,a,[],Fs);');
%! ylabel('Group Delay (samples)');
% ------------------------ TESTS -----------------------
%!test % 00
%! [gd1,w] = grpdelay([0,1]);
%! [gd2,w] = grpdelay([0,1],1);
%! assert(gd1,gd2,10*eps);
%!test % 0A
%! [gd,w] = grpdelay([0,1],1,4);
%! assert(gd,[1;1;1;1]);
%! assert(w,pi/4*[0:3]',10*eps);
%!test % 0B
%! [gd,w] = grpdelay([0,1],1,4,'whole');
%! assert(gd,[1;1;1;1]);
%! assert(w,pi/2*[0:3]',10*eps);
%!test % 0C
%! [gd,f] = grpdelay([0,1],1,4,0.5);
%! assert(gd,[1;1;1;1]);
%! assert(f,1/16*[0:3]',10*eps);
%!test % 0D
%! [gd,w] = grpdelay([0,1],1,4,'whole',1);
%! assert(gd,[1;1;1;1]);
%! assert(w,1/4*[0:3]',10*eps);
%!test % 0E
%! [gd,f] = grpdelay([1 -0.9j],[],4,'whole',1);
%! gd0 = 0.447513812154696; gdm1 =0.473684210526316;
%! assert(gd,[gd0;-9;gd0;gdm1],20*eps);
%! assert(f,1/4*[0:3]',10*eps);
%!test % 1A:
%! gd= grpdelay(1,[1,.9],2*pi*[0,0.125,0.25,0.375]);
%! assert(gd, [-0.47368;-0.46918;-0.44751;-0.32316],1e-5);
%!test % 1B:
%! gd= grpdelay(1,[1,.9],[0,0.125,0.25,0.375],1);
%! assert(gd, [-0.47368;-0.46918;-0.44751;-0.32316],1e-5);
%!test % 2:
%! gd = grpdelay([1,2],[1,0.5,.9],4);
%! assert(gd,[-0.29167;-0.24218;0.53077;0.40658],1e-5);
%!test % 3
%! b1=[1,2];a1f=[0.25,0.5,1];a1=fliplr(a1f);
%! % gd1=grpdelay(b1,a1,4);
%! gd=grpdelay(conv(b1,a1f),1,4)-2;
%! assert(gd, [0.095238;0.239175;0.953846;1.759360],1e-5);
%!test % 4
%! Fs = 8000;
%! [b, a] = cheby1(3, 3, 2*[1000, 3000]/Fs, 'stop');
%! [h, w] = grpdelay(b, a, 256, 'half', Fs);
%! [h2, w2] = grpdelay(b, a, 512, 'whole', Fs);
%! assert (size(h), size(w));
%! assert (length(h), 256);
%! assert (size(h2), size(w2));
%! assert (length(h2), 512);
%! assert (h, h2(1:256));
%! assert (w, w2(1:256));
%!test % 5
%! a = [1 0 0.9];
%! b = [0.9 0 1];
%! [dh, wf] = grpdelay(b, a, 512, 'whole');
%! [da, wa] = grpdelay(1, a, 512, 'whole');
%! [db, wb] = grpdelay(b, 1, 512, 'whole');
%! assert(dh,db+da,1e-5);
## test for bug #39133 (do not fail for row or column vector)
%!test
%! DR= [1.00000 -0.00000 -3.37219 0.00000 ...
%! 5.45710 -0.00000 -5.24394 0.00000 ...
%! 3.12049 -0.00000 -1.08770 0.00000 0.17404];
%! N = [-0.0139469 -0.0222376 0.0178631 0.0451737 ...
%! 0.0013962 -0.0259712 0.0016338 0.0165189 ...
%! 0.0115098 0.0095051 0.0043874];
%! assert (nthargout (1:2, @grpdelay, N, DR, 1024),
%! nthargout (1:2, @grpdelay, N', DR', 1024));
|