/usr/share/octave/packages/signal-1.3.2/fir2.m is in octave-signal 1.3.2-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 | ## Copyright (C) 2000 Paul Kienzle <pkienzle@users.sf.net>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{b} =} fir2 (@var{n}, @var{f}, @var{m})
## @deftypefnx {Function File} {@var{b} =} fir2 (@var{n}, @var{f}, @var{m}, @var{grid_n})
## @deftypefnx {Function File} {@var{b} =} fir2 (@var{n}, @var{f}, @var{m}, @var{grid_n}, @var{ramp_n})
## @deftypefnx {Function File} {@var{b} =} fir2 (@var{n}, @var{f}, @var{m}, @var{grid_n}, @var{ramp_n}, @var{window})
##
## Produce an order @var{n} FIR filter with arbitrary frequency response
## @var{m} over frequency bands @var{f}, returning the @var{n}+1 filter
## coefficients in @var{b}. The vector @var{f} specifies the frequency band
## edges of the filter response and @var{m} specifies the magnitude response
## at each frequency.
##
## The vector @var{f} must be nondecreasing over the range [0,1], and the
## first and last elements must be 0 and 1, respectively. A discontinuous
## jump in the frequency response can be specified by duplicating a band edge
## in @var{f} with different values in @var{m}.
##
## The resolution over which the frequency response is evaluated can be
## controlled with the @var{grid_n} argument. The default is 512 or the
## next larger power of 2 greater than the filter length.
##
## The band transition width for discontinuities can be controlled with the
## @var{ramp_n} argument. The default is @var{grid_n}/25. Larger values
## will result in wider band transitions but better stopband rejection.
##
## An optional shaping @var{window} can be given as a vector with length
## @var{n}+1. If not specified, a Hamming window of length @var{n}+1 is used.
##
## To apply the filter, use the return vector @var{b} with the @code{filter}
## function, for example @code{y = filter (b, 1, x)}.
##
## Example:
## @example
## f = [0, 0.3, 0.3, 0.6, 0.6, 1]; m = [0, 0, 1, 1/2, 0, 0];
## [h, w] = freqz (fir2 (100, f, m));
## plot (f, m, ";target response;", w/pi, abs (h), ";filter response;");
## @end example
## @seealso{filter, fir1}
## @end deftypefn
function b = fir2(n, f, m, grid_n, ramp_n, window)
if nargin < 3 || nargin > 6
print_usage;
endif
## verify frequency and magnitude vectors are reasonable
t = length(f);
if t<2 || f(1)!=0 || f(t)!=1 || any(diff(f)<0)
error ("fir2: frequency must be nondecreasing starting from 0 and ending at 1");
elseif t != length(m)
error ("fir2: frequency and magnitude vectors must be the same length");
## find the grid spacing and ramp width
elseif (nargin>4 && length(grid_n)>1) || ...
(nargin>5 && (length(grid_n)>1 || length(ramp_n)>1))
error ("fir2: grid_n and ramp_n must be integers");
endif
if nargin < 4, grid_n=[]; endif
if nargin < 5, ramp_n=[]; endif
## find the window parameter, or default to hamming
w=[];
if length(grid_n)>1, w=grid_n; grid_n=[]; endif
if length(ramp_n)>1, w=ramp_n; ramp_n=[]; endif
if nargin < 6, window=w; endif
if isempty(window), window=hamming(n+1); endif
if !isreal(window) || ischar(window), window=feval(window, n+1); endif
if length(window) != n+1, error ("fir2: window must be of length n+1"); endif
## Default grid size is 512... unless n+1 >= 1024
if isempty (grid_n)
if n+1 < 1024
grid_n = 512;
else
grid_n = n+1;
endif
endif
## ML behavior appears to always round the grid size up to a power of 2
grid_n = 2 ^ nextpow2 (grid_n);
## Error out if the grid size is not big enough for the window
if 2*grid_n < n+1
error ("fir2: grid size must be greater than half the filter order");
endif
if isempty (ramp_n), ramp_n = fix (grid_n / 25); endif
## Apply ramps to discontinuities
if (ramp_n > 0)
## remember original frequency points prior to applying ramps
basef = f(:); basem = m(:);
## separate identical frequencies, but keep the midpoint
idx = find (diff(f) == 0);
f(idx) = f(idx) - ramp_n/grid_n/2;
f(idx+1) = f(idx+1) + ramp_n/grid_n/2;
f = [f(:);basef(idx)]';
## make sure the grid points stay monotonic in [0,1]
f(f<0) = 0;
f(f>1) = 1;
f = unique([f(:);basef(idx)(:)]');
## preserve window shape even though f may have changed
m = interp1(basef, basem, f);
## axis([-.1 1.1 -.1 1.1])
## plot(f,m,'-xb;ramped;',basef,basem,'-or;original;'); pause;
endif
## interpolate between grid points
grid = interp1(f,m,linspace(0,1,grid_n+1)');
## hold on; plot(linspace(0,1,grid_n+1),grid,'-+g;grid;'); hold off; pause;
## Transform frequency response into time response and
## center the response about n/2, truncating the excess
if (rem(n,2) == 0)
b = ifft([grid ; grid(grid_n:-1:2)]);
mid = (n+1)/2;
b = real ([ b([end-floor(mid)+1:end]) ; b(1:ceil(mid)) ]);
else
## Add zeros to interpolate by 2, then pick the odd values below.
b = ifft([grid ; zeros(grid_n*2,1) ;grid(grid_n:-1:2)]);
b = 2 * real([ b([end-n+1:2:end]) ; b(2:2:(n+1))]);
endif
## Multiplication in the time domain is convolution in frequency,
## so multiply by our window now to smooth the frequency response.
## Also, for matlab compatibility, we return return values in 1 row
b = b(:)' .* window(:)';
endfunction
%% Test that the grid size is rounded up to the next power of 2
%!xtest
%! f = [0 0.6 0.6 1]; m = [1 1 0 0];
%! b9 = fir2 (30, f, m, 9);
%! b16 = fir2 (30, f, m, 16);
%! b17 = fir2 (30, f, m, 17);
%! b32 = fir2 (30, f, m, 32);
%! assert ( isequal (b9, b16))
%! assert ( isequal (b17, b32))
%! assert (~isequal (b16, b17))
%% Test expected magnitudes of passbands, stopbands, and cutoff frequencies
%!test
%! f = [0, 0.7, 0.7, 1]; m = [0, 0, 1, 1];
%! b = fir2 (50, f, m);
%! h = abs (freqz (b, 1, [0, 0.7, 1], 2));
%! assert (h(1) <= 3e-3)
%! assert (h(2) <= 1/sqrt (2))
%! assert (h(3), 1, 2e-3)
%!test
%! f = [0, 0.25, 0.25, 0.75, 0.75, 1]; m = [0, 0, 1, 1, 0, 0];
%! b = fir2 (50, f, m);
%! h = abs (freqz (b, 1, [0, 0.25, 0.5, 0.75, 1], 2));
%! assert (h(1) <= 3e-3)
%! assert (h(2) <= 1/sqrt (2))
%! assert (h(3), 1, 2e-3)
%! assert (h(4) <= 1/sqrt (2))
%! assert (h(5) <= 3e-3)
%!test
%! f = [0, 0.45, 0.45, 0.55, 0.55, 1]; m = [1, 1, 0, 0, 1, 1];
%! b = fir2 (50, f, m);
%! h = abs (freqz (b, 1, [0, 0.45, 0.5, 0.55, 1], 2));
%! assert (h(1), 1, 2e-3)
%! assert (h(2) <= 1/sqrt (2))
%! assert (h(3) <= 1e-1)
%! assert (h(4) <= 1/sqrt (2))
%! assert (h(5), 1, 2e-3)
%!demo
%! f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0];
%! [h, w] = freqz(fir2(100,f,m));
%! subplot(121);
%! plot(f,m,';target response;',w/pi,abs(h),';filter response;');
%! subplot(122);
%! plot(f,20*log10(m+1e-5),';target response (dB);',...
%! w/pi,20*log10(abs(h)),';filter response (dB);');
%!demo
%! f=[0, 0.3, 0.3, 0.6, 0.6, 1]; m=[0, 0, 1, 1/2, 0, 0];
%! plot(f,20*log10(m+1e-5),';target response;');
%! hold on;
%! [h, w] = freqz(fir2(50,f,m,512,0));
%! plot(w/pi,20*log10(abs(h)),';filter response (ramp=0);');
%! [h, w] = freqz(fir2(50,f,m,512,25.6));
%! plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/20 rad);');
%! [h, w] = freqz(fir2(50,f,m,512,51.2));
%! plot(w/pi,20*log10(abs(h)),';filter response (ramp=pi/10 rad);');
%! hold off;
%!demo
%! % Classical Jakes spectrum
%! % X represents the normalized frequency from 0
%! % to the maximum Doppler frequency
%! asymptote = 2/3;
%! X = linspace(0,asymptote-0.0001,200);
%! Y = (1 - (X./asymptote).^2).^(-1/4);
%!
%! % The target frequency response is 0 after the asymptote
%! X = [X, asymptote, 1];
%! Y = [Y, 0, 0];
%!
%! plot(X,Y,'b;Target spectrum;');
%! hold on;
%! [H,F]=freqz(fir2(20, X, Y));
%! plot(F/pi,abs(H),'c;Synthesized spectrum (n=20);');
%! [H,F]=freqz(fir2(50, X, Y));
%! plot(F/pi,abs(H),'r;Synthesized spectrum (n=50);');
%! [H,F]=freqz(fir2(200, X, Y));
%! plot(F/pi,abs(H),'g;Synthesized spectrum (n=200);');
%! hold off;
%! title('Theoretical/Synthesized CLASS spectrum');
%! xlabel('Normalized frequency (Fs=2)');
%! ylabel('Magnitude');
|