This file is indexed.

/usr/share/octave/packages/quaternion-2.4.0/q2rot.m is in octave-quaternion 2.4.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
## Copyright (C) 1998, 1999, 2000, 2002, 2005, 2006, 2007 Auburn University
## Copyright (C) 2010-2015   Lukas F. Reichlin
##
## This program is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## This program is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with this program.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{axis}, @var{angle}] =} q2rot (@var{q})
## @deftypefnx {Function File} {[@var{axis}, @var{angle}, @var{qn}] =} q2rot (@var{q})
## Extract vector/angle form of a unit quaternion @var{q}.
##
## @strong{Inputs}
## @table @var
## @item q
## Unit quaternion describing the rotation.
## Quaternion @var{q} can be a scalar or an array.
## In the latter case, @var{q} is reshaped to a row vector
## and the return values @var{axis} and @var{angle} are
## concatenated horizontally, accordingly.
## @end table
##
## @strong{Outputs}
## @table @var
## @item axis
## Eigenaxis as a 3-d unit vector @code{[x; y; z]}.
## If input argument @var{q} is a quaternion array,
## @var{axis} becomes a matrix where
## @var{axis(:,i)} corresponds to @var{q(i)}.
## @item angle
## Rotation angle in radians.  The positive direction is
## determined by the right-hand rule applied to @var{axis}.
## The angle lies in the interval [0, 2*pi].
## If input argument @var{q} is a quaternion array,
## @var{angle} becomes a row vector where
## @var{angle(i)} corresponds to @var{q(i)}.
## @item qn
## Optional output of diagnostic nature.
## @code{qn = reshape (q, 1, [])} or, if needed, 
## @code{qn = reshape (unit (q), 1, [])}.
## @end table
##
## @strong{Example}
## @example
## @group
## octave:1> axis = [0; 0; 1]
## axis =
## 
##    0
##    0
##    1
## 
## octave:2> angle = pi/4
## angle =  0.78540
## octave:3> q = rot2q (axis, angle)
## q = 0.9239 + 0i + 0j + 0.3827k
## octave:4> [vv, th] = q2rot (q)
## vv =
## 
##    0
##    0
##    1
## 
## th =  0.78540
## octave:5> theta = th*180/pi
## theta =  45.000
## octave:6>
## @end group
## @end example
##
## @end deftypefn

## Adapted from: quaternion by A. S. Hodel <a.s.hodel@eng.auburn.edu>
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: May 2010
## Version: 0.4

function [vv, theta, q] = q2rot (q)

  if (nargin != 1 || nargout > 3)
    print_usage ();
  endif

  if (! isa (q, "quaternion"))
    error ("q2rot: require quaternion as input");
  endif

  if (any (abs (abs (q) - 1) > 1e-12))
    warning ("q2rot:normalizing", "q2rot: abs(q) != 1, normalizing");
    q = unit (q);   # do we still need this with the atan2 formula?
  endif

  q = reshape (q, 1, []);   # row vector

  ## According to Wikipedia,
  ## <http://en.wikipedia.org/wiki/Axis-angle_representation#Unit_quaternions>
  ## the formula using atan2
  ##    theta = 2 * atan2 (||x||, s)
  ## should be numerically more stable than
  ##    theta = 2 * acos (s)
  ## Possibly it helps if the quaternion has not exactly unit length.
  
  vv = [q.x; q.y; q.z];
  norm_vv = norm (vv, 2, "cols");
  theta = 2 * atan2 (norm_vv, q.w);

  ## NOTE: sin (theta/2) = norm (vv)
  idx = (norm_vv != 0);
  if (any (idx))
    vv(:, idx) ./= ones (3, 1) * norm_vv(idx);      # normalize vectors, prevent division by zero
  endif
  idx = ! idx;
  if (any (idx))
    vv(:, idx) = [1; 0; 0] * ones (1, nnz (idx));   # set real-valued quaternions to default value
  endif

endfunction


%!test
%! q = quaternion (2, 0, 0, 0);
%! w = warning ("query", "q2rot:normalizing");
%! warning ("off", w.identifier);
%! [vv, th, qn] = q2rot (q);
%! warning (w.identifier, w.state);
%! assert (vv, [1; 0; 0], 1e-4);
%! assert (th, 0, 1e-4);
%! assert (qn == quaternion (1), true);