This file is indexed.

/usr/share/octave/packages/quaternion-2.4.0/doc-cache is in octave-quaternion 2.4.0-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
# doc-cache created by Octave 4.2.1
# name: cache
# type: cell
# rows: 3
# columns: 7
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
q2rot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1560
 -- Function File: [AXIS, ANGLE] = q2rot (Q)
 -- Function File: [AXIS, ANGLE, QN] = q2rot (Q)
     Extract vector/angle form of a unit quaternion Q.

     *Inputs*
     Q
          Unit quaternion describing the rotation.  Quaternion Q can be
          a scalar or an array.  In the latter case, Q is reshaped to a
          row vector and the return values AXIS and ANGLE are
          concatenated horizontally, accordingly.

     *Outputs*
     AXIS
          Eigenaxis as a 3-d unit vector '[x; y; z]'.  If input argument
          Q is a quaternion array, AXIS becomes a matrix where AXIS(:,I)
          corresponds to Q(I).
     ANGLE
          Rotation angle in radians.  The positive direction is
          determined by the right-hand rule applied to AXIS.  The angle
          lies in the interval [0, 2*pi].  If input argument Q is a
          quaternion array, ANGLE becomes a row vector where ANGLE(I)
          corresponds to Q(I).
     QN
          Optional output of diagnostic nature.  'qn = reshape (q, 1,
          [])' or, if needed, 'qn = reshape (unit (q), 1, [])'.

     *Example*
          octave:1> axis = [0; 0; 1]
          axis =

             0
             0
             1

          octave:2> angle = pi/4
          angle =  0.78540
          octave:3> q = rot2q (axis, angle)
          q = 0.9239 + 0i + 0j + 0.3827k
          octave:4> [vv, th] = q2rot (q)
          vv =

             0
             0
             1

          th =  0.78540
          octave:5> theta = th*180/pi
          theta =  45.000
          octave:6>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Extract vector/angle form of a unit quaternion Q.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 311
 -- Function File: qi
     Create x-component of a quaternion's vector part.

          q = w + x*qi + y*qj + z*qk

     *Example*
          octave:1> q1 = quaternion (1, 2, 3, 4)
          q1 = 1 + 2i + 3j + 4k
          octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
          q2 = 1 + 2i + 3j + 4k
          octave:3>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create x-component of a quaternion's vector part.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qj


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 311
 -- Function File: qj
     Create y-component of a quaternion's vector part.

          q = w + x*qi + y*qj + z*qk

     *Example*
          octave:1> q1 = quaternion (1, 2, 3, 4)
          q1 = 1 + 2i + 3j + 4k
          octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
          q2 = 1 + 2i + 3j + 4k
          octave:3>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create y-component of a quaternion's vector part.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2
qk


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 311
 -- Function File: qk
     Create z-component of a quaternion's vector part.

          q = w + x*qi + y*qj + z*qk

     *Example*
          octave:1> q1 = quaternion (1, 2, 3, 4)
          q1 = 1 + 2i + 3j + 4k
          octave:2> q2 = 1 + 2*qi + 3*qj + 4*qk
          q2 = 1 + 2i + 3j + 4k
          octave:3>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Create z-component of a quaternion's vector part.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
rot2q


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1273
 -- Function File: Q = rot2q (AXIS, ANGLE)
     Create unit quaternion Q which describes a rotation of ANGLE
     radians about the vector AXIS.  This function uses the active
     convention where the vector AXIS is rotated by ANGLE radians.  If
     the coordinate frame should be rotated by ANGLE radians, also
     called the passive convention, this is equivalent to rotating the
     AXIS by -ANGLE radians.

     *Inputs*
     AXIS
          Vector '[x, y, z]' or '[x; y; z]' describing the axis of
          rotation.
     ANGLE
          Rotation angle in radians.  The positive direction is
          determined by the right-hand rule applied to AXIS.  If ANGLE
          is a real-valued array, a quaternion array Q of the same size
          is returned.

     *Outputs*
     Q
          Unit quaternion describing the rotation.  If ANGLE is an
          array, Q(I,J) corresponds to the rotation angle ANGLE(I,J).

     *Example*
          octave:1> axis = [0, 0, 1];
          octave:2> angle = pi/4;
          octave:3> q = rot2q (axis, angle)
          q = 0.9239 + 0i + 0j + 0.3827k
          octave:4> v = quaternion (1, 1, 0)
          v = 0 + 1i + 1j + 0k
          octave:5> vr = q * v * conj (q)
          vr = 0 + 0i + 1.414j + 0k
          octave:6>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Create unit quaternion Q which describes a rotation of ANGLE radians
about the v



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
rotm2q


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 90
 -- Function File: Q = rotm2q (R)
     Convert 3x3 rotation matrix R to unit quaternion Q.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Convert 3x3 rotation matrix R to unit quaternion Q.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
test_quaternion


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
 -- Script File: test_quaternion
     Execute all available tests at once.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Execute all available tests at once.