This file is indexed.

/usr/share/octave/packages/odepkg-0.8.5/odepkg_examples_ode.m is in octave-odepkg 0.8.5-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
%# Copyright (C) 2008-2012, Thomas Treichl <treichl@users.sourceforge.net>
%# OdePkg - A package for solving ordinary differential equations and more
%#
%# This program is free software; you can redistribute it and/or modify
%# it under the terms of the GNU General Public License as published by
%# the Free Software Foundation; either version 2 of the License, or
%# (at your option) any later version.
%#
%# This program is distributed in the hope that it will be useful,
%# but WITHOUT ANY WARRANTY; without even the implied warranty of
%# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%# GNU General Public License for more details.
%#
%# You should have received a copy of the GNU General Public License
%# along with this program; If not, see <http://www.gnu.org/licenses/>.

%# -*- texinfo -*-
%# @deftypefn {Function File} {[@var{}] =} odepkg_examples_ode (@var{})
%# Open the ODE examples menu and allow the user to select a demo that will be evaluated.
%# @end deftypefn

function [] = odepkg_examples_ode ()

  vode = 1; while (vode > 0)
    clc;
    fprintf (1, ...
      ['ODE examples menu:\n', ...
       '==================\n', ...
       '\n', ...
       '   (1) Solve a non-stiff "Van der Pol" example with solver "ode78"\n', ...
       '   (2) Solve a "Van der Pol" example backward with solver "ode23"\n', ...
       '   (3) Solve a "Pendulous" example with solver "ode45"\n', ...
       '   (4) Solve the "Lorenz attractor" with solver "ode54"\n', ...
       '   (5) Solve the "Roessler equation" with solver "ode78"\n', ...
       '\n', ...
       '   Note: There are further ODE examples available with the OdePkg\n', ...
       '         testsuite functions.\n', ...
       '\n', ...
       '   If you have another interesting ODE example that you would like\n', ...
       '   to share then please modify this file, create a patch and send\n', ...
       '   your patch with your added example to the OdePkg developer team.\n', ...
       '\n' ]);
    vode = input ('Please choose a number from above or press <Enter> to return: ');
    clc; if (vode > 0 && vode < 6)
      %# We can't use the function 'demo' directly here because it does
      %# not allow to run other functions within a demo.
      vexa = example (mfilename (), vode);
      disp (vexa); eval (vexa);
      input ('Press <Enter> to continue: ');
    end %# if (vode > 0)
  end %# while (vode > 0)

%!demo
%! # In this example the non-stiff "Van der Pol" equation (mu = 1) is
%! # solved and the results are displayed in a figure while solving.
%! # Read about the Van der Pol oscillator at
%! #   http://en.wikipedia.org/wiki/Van_der_Pol_oscillator.
%!
%! function [vyd] = fvanderpol (vt, vy, varargin)
%!   mu = varargin{1};
%!   vyd = [vy(2); mu * (1 - vy(1)^2) * vy(2) - vy(1)];
%! endfunction
%!
%! vopt = odeset ('RelTol', 1e-8);
%! ode78 (@fvanderpol, [0 20], [2 0], vopt, 1);

%!demo
%! # In this example the non-stiff "Van der Pol" equation (mu = 1) is
%! # solved in forward and backward direction and the results are 
%! # displayed in a figure after solving. Read about the Van der Pol
%! # oscillator at http://en.wikipedia.org/wiki/Van_der_Pol_oscillator.
%!
%! function [ydot] = fpol (vt, vy, varargin)
%!   ydot = [vy(2); (1 - vy(1)^2) * vy(2) - vy(1)];
%! endfunction
%!
%! vopt = odeset ('NormControl', 'on');
%! vsol = ode23 (@fpol, [0, 20], [2, 0], vopt);
%! subplot (2, 3, 1); plot (vsol.x, vsol.y);
%! vsol = ode23 (@fpol, [0:0.1:20], [2, 0], vopt);
%! subplot (2, 3, 2); plot (vsol.x, vsol.y);
%! vsol = ode23 (@fpol, [-20, 20], [-1.1222e-3, -0.2305e-3], vopt);
%! subplot (2, 3, 3); plot (vsol.x, vsol.y);
%!
%! vopt = odeset ('NormControl', 'on');
%! vsol = ode23 (@fpol, [0:-0.1:-20], [2, 0], vopt);
%! subplot (2, 3, 4); plot (vsol.x, vsol.y);
%! vsol = ode23 (@fpol, [0, -20], [2, 0], vopt);
%! subplot (2, 3, 5); plot (vsol.x, vsol.y);
%! vsol = ode23 (@fpol, [20:-0.1:-20], [-2.0080, 0.0462], vopt);
%! subplot (2, 3, 6); plot (vsol.x, vsol.y);

%!demo
%! # In this example a simple "pendulum with damping" is solved and the
%! # results are displayed in a figure while solving. Read about the 
%! # pendulum with damping at
%! #   http://en.wikipedia.org/wiki/Pendulum
%!
%! function [vyd] = fpendulum (vt, vy)
%!   m = 1;    %# The pendulum mass in kg
%!   g = 9.81; %# The gravity in m/s^2
%!   l = 1;    %# The pendulum length in m
%!   b = 0.7;  %# The damping factor in kgm^2/s
%!   vyd = [vy(2,1); ...
%!          1 / (1/3 * m * l^2) * (-b * vy(2,1) - m * g * l/2 * sin (vy(1,1)))];
%! endfunction
%!
%! vopt = odeset ('RelTol', 1e-3, 'OutputFcn', @odeplot);
%! ode45 (@fpendulum, [0 5], [30*pi/180, 0], vopt);

%!demo
%! # In this example the "Lorenz attractor" implementation is solved
%! # and the results are plot in a figure after solving. Read about
%! # the Lorenz attractor at
%! #   http://en.wikipedia.org/wiki/Lorenz_equation
%! # 
%! # The upper left subfigure shows the three results of the integration
%! # over time. The upper right subfigure shows the force f in a two
%! # dimensional (x,y) plane as well as the lower left subfigure shows
%! # the force in the (y,z) plane. The three dimensional force is plot
%! # in the lower right subfigure.
%!
%! function [vyd] = florenz (vt, vy)
%!   vyd = [10 * (vy(2) - vy(1));
%!          vy(1) * (28 - vy(3));
%!          vy(1) * vy(2) - 8/3 * vy(3)];
%! endfunction
%!
%! A = odeset ('InitialStep', 1e-3, 'MaxStep', 1e-1);
%! [t, y] = ode54 (@florenz, [0 25], [3 15 1], A);
%!
%! subplot (2, 2, 1); grid ('on'); 
%!   plot (t, y(:,1), '-b', t, y(:,2), '-g', t, y(:,3), '-r');
%!   legend ('f_x(t)', 'f_y(t)', 'f_z(t)');
%! subplot (2, 2, 2); grid ('on'); 
%!   plot (y(:,1), y(:,2), '-b');
%!   legend ('f_{xyz}(x, y)');
%! subplot (2, 2, 3); grid ('on'); 
%!   plot (y(:,2), y(:,3), '-b');
%!   legend ('f_{xyz}(y, z)');
%! subplot (2, 2, 4); grid ('on');
%!   plot3 (y(:,1), y(:,2), y(:,3), '-b');
%!   legend ('f_{xyz}(x, y, z)');

%!demo
%! # In this example the "Roessler attractor" implementation is solved
%! # and the results are plot in a figure after solving. Read about
%! # the Roessler attractor at
%! #   http://en.wikipedia.org/wiki/R%C3%B6ssler_attractor
%! #
%! # The upper left subfigure shows the three results of the integration
%! # over time. The upper right subfigure shows the force f in a two 
%! # dimensional (x,y) plane as well as the lower left subfigure shows
%! # the force in the (y,z) plane. The three dimensional force is plot
%! # in the lower right subfigure.
%!
%! function [vyd] = froessler (vt, vx)
%!   vyd = [- ( vx(2) + vx(3) );
%!          vx(1) + 0.2 * vx(2);
%!          0.2 + vx(1) * vx(3) - 5.7 * vx(3)];
%! endfunction
%!
%! A = odeset ('MaxStep', 1e-1);
%! [t, y] = ode78 (@froessler, [0 70], [0.1 0.3 0.1], A);
%!
%! subplot (2, 2, 1); grid ('on'); 
%!   plot (t, y(:,1), '-b;f_x(t);', t, y(:,2), '-g;f_y(t);', \
%!         t, y(:,3), '-r;f_z(t);');
%! subplot (2, 2, 2); grid ('on'); 
%!   plot (y(:,1), y(:,2), '-b;f_{xyz}(x, y);');
%! subplot (2, 2, 3); grid ('on'); 
%!   plot (y(:,2), y(:,3), '-b;f_{xyz}(y, z);');
%! subplot (2, 2, 4); grid ('on'); 
%!   plot3 (y(:,1), y(:,2), y(:,3), '-b;f_{xyz}(x, y, z);');

%# Local Variables: ***
%# mode: octave ***
%# End: ***