This file is indexed.

/usr/share/octave/packages/nurbs-1.3.13/nrbbasisfunder.m is in octave-nurbs 1.3.13-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
function varargout = nrbbasisfunder (points, nrb)

% NRBBASISFUNDER:  NURBS basis functions derivatives
%
% Calling Sequence:
% 
%   Bu          = nrbbasisfunder (u, crv)
%   [Bu, N]     = nrbbasisfunder (u, crv)
%   [Bu, Bv]    = nrbbasisfunder ({u, v}, srf)
%   [Bu, Bv, N] = nrbbasisfunder ({u, v}, srf)
%   [Bu, Bv, N] = nrbbasisfunder (pts, srf)
%   [Bu, Bv, Bw, N] = nrbbasisfunder ({u, v, w}, vol)
%   [Bu, Bv, Bw, N] = nrbbasisfunder (pts, vol)
%
%    INPUT:
%   
%      u   - parametric coordinates along u direction
%      v   - parametric coordinates along v direction
%      w   - parametric coordinates along w direction
%      pts - array of scattered points in parametric domain, array size: (ndim,num_points)
%      crv - NURBS curve
%      srf - NURBS surface
%      vol - NURBS volume
%
%    If the parametric coordinates are given in a cell-array, the values
%     are computed in a tensor product set of points
%   
%    OUTPUT:
%   
%      Bu - Basis functions derivatives WRT direction u
%           size(Bu)=[npts, prod(nrb.order)]
%
%      Bv - Basis functions derivatives WRT direction v
%           size(Bv) == size(Bu)
%
%      Bw - Basis functions derivatives WRT direction w
%           size(Bw) == size(Bu)
%
%      N - Indices of the basis functions that are nonvanishing at each
%          point. size(N) == size(Bu)
%   
%    Copyright (C) 2009 Carlo de Falco
%    Copyright (C) 2016 Rafael Vazquez
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.

  
  if (   (nargin<2) ...
      || (nargout>3) ...
      || (~isstruct(nrb)) ...
      || (iscell(points) && ~iscell(nrb.knots)) ...
      || (~iscell(points) && iscell(nrb.knots) && (size(points,1)~=numel(nrb.number))) ...
      || (~iscell(nrb.knots) && (nargout>2)) ...
      )
    error('Incorrect input arguments in nrbbasisfunder');
  end

  if (~iscell (nrb.knots)) %% NURBS curve
    knt = {nrb.knots};
  else                     %% NURBS surface or volume
    knt = nrb.knots;
  end
  
  ndim = numel (nrb.number);
  w = reshape (nrb.coefs(4,:), [nrb.number 1]);
  
  for idim = 1:ndim
    if (iscell (points))
      pts_dim = points{idim};
    else
      pts_dim = points(idim,:);
    end
    sp{idim} = findspan (nrb.number(idim)-1, nrb.order(idim)-1, pts_dim, knt{idim});
    Nprime = basisfunder (sp{idim}, nrb.order(idim)-1, pts_dim, knt{idim}, 1);
    N{idim} = reshape (Nprime(:,1,:), numel(pts_dim), nrb.order(idim));
    Nder{idim} = reshape (Nprime(:,2,:), numel(pts_dim), nrb.order(idim));
    num{idim} = numbasisfun (sp{idim}, pts_dim, nrb.order(idim)-1, knt{idim}) + 1;
  end

  if (ndim == 1)
    B1 = reshape (w(num{1}), size(N{1})) .* N{1};
    W = sum (B1, 2);
    B2 = reshape (w(num{1}), size(N{1})) .* Nder{1};
    Wder = sum (B2, 2);

    B2 = bsxfun (@(x,y) x./y, B2, W);
    B1 = bsxfun (@(x,y) x.*y, B1, Wder./W.^2);
    B = B2 - B1;
    varargout{1} = B;
    varargout{2} = num{1};
  else
    id = nrbnumbasisfun (points, nrb);
    if (iscell (points))
      npts_dim = cellfun (@numel, points);
      npts = prod (npts_dim);
      val_aux = 1;
      val_ders = repmat ({1}, ndim, 1);
      for idim = 1:ndim
        val_aux = kron (N{idim}, val_aux);        
        for jdim = 1:ndim
          if (idim == jdim)
            val_ders{idim} = kron(Nder{jdim}, val_ders{idim});
          else
            val_ders{idim} = kron(N{jdim}, val_ders{idim});
          end
        end
      end
      
      B1 = w(id) .* reshape (val_aux, npts, prod(nrb.order));
      W = sum (B1, 2);
      for idim = 1:ndim
        B2 = w(id) .* reshape (val_ders{idim}, npts, prod(nrb.order));
        Wder = sum (B2, 2);        
        varargout{idim} = bsxfun (@(x,y) x./y, B2, W) - bsxfun (@(x,y) x.*y, B1, Wder ./ W.^2);
      end
    else
      npts = numel (points(1,:));
      B = zeros (npts, prod(nrb.order));
      Bder = repmat ({B}, ndim, 1);

      for ipt = 1:npts
        val_aux = 1;
        val_ders = repmat ({1}, ndim, 1);
        for idim = 1:ndim
          val_aux = reshape (val_aux.' * N{idim}(ipt,:), 1, []);
%           val_aux = kron (N{idim}(ipt,:), val_aux);
          for jdim = 1:ndim
            if (idim == jdim)
              val_ders{idim} = reshape (val_ders{idim}.' * Nder{jdim}(ipt,:), 1, []);
            else
              val_ders{idim} = reshape (val_ders{idim}.' * N{jdim}(ipt,:), 1, []);
            end
          end
        end
        wval = reshape (w(id(ipt,:)), size(val_aux));
        val_aux = val_aux .* wval;
        W = sum (val_aux);
        for idim = 1:ndim
          val_ders{idim} = val_ders{idim} .* wval;
          Wder = sum (val_ders{idim});
          Bder{idim}(ipt,:) = bsxfun (@(x,y) x./y, val_ders{idim}, W) - bsxfun (@(x,y) x.*y, val_aux, Wder ./ W.^2);
        end
      end
      varargout(1:ndim) = Bder(1:ndim);
    end
    if (nargout > ndim)
      varargout{ndim+1} = id;
    end
      
  end
  
end
  
%!demo
%! U = [0 0 0 0 1 1 1 1];
%! x = [0 1/3 2/3 1] ;
%! y = [0 0 0 0];
%! w = [1 1 1 1];
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 30);
%! [Bu, id] = nrbbasisfunder (u, nrb);
%! plot(u, Bu)
%! title('Derivatives of the cubic Bernstein polynomials')
%! hold off

%!test
%! U = [0 0 0 0 1 1 1 1];
%! x = [0 1/3 2/3 1] ;
%! y = [0 0 0 0];
%! w = rand(1,4);
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 30);
%! [Bu, id] = nrbbasisfunder (u, nrb);
%! #plot(u, Bu)
%! assert (sum(Bu, 2), zeros(numel(u), 1), 1e-10), 

%!test
%! U = [0 0 0 0 1/2 1 1 1 1];
%! x = [0 1/4 1/2 3/4 1] ;
%! y = [0 0 0 0 0];
%! w = rand(1,5);
%! nrb = nrbmak ([x;y;y;w], U);
%! u = linspace(0, 1, 300); 
%! [Bu, id] = nrbbasisfunder (u, nrb); 
%! assert (sum(Bu, 2), zeros(numel(u), 1), 1e-10)

%!test
%! p = 2;   q = 3;   m = 4; n = 5;
%! Lx  = 1; Ly  = 1; 
%! nrb = nrb4surf   ([0 0], [1 0], [0 1], [1 1]);
%! nrb = nrbdegelev (nrb, [p-1, q-1]);
%! aux1 = linspace(0,1,m); aux2 = linspace(0,1,n);
%! nrb = nrbkntins  (nrb, {aux1(2:end-1), aux2(2:end-1)});
%! nrb.coefs (4,:,:) = nrb.coefs(4,:,:) + rand (size (nrb.coefs (4,:,:)));
%! [Bu, Bv, N] = nrbbasisfunder ({rand(1, 20), rand(1, 20)}, nrb);
%! #plot3(squeeze(u(1,:,:)), squeeze(u(2,:,:)), reshape(Bu(:,10), 20, 20),'o')
%! assert (sum (Bu, 2), zeros(20^2, 1), 1e-10)