This file is indexed.

/usr/share/octave/packages/nurbs-1.3.13/bspinterpsurf.m is in octave-nurbs 1.3.13-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
function srf = bspinterpsurf (X, Y, Z, p, method)
%
% BSPINTERPSURF: B-Spline surface interpolation.
%
% Calling Sequence:
% 
%   srf = bspinterpsurf (Q, p, method);
%   
%    INPUT:
%   
%      X, Y, Z - grid of points to be interpolated. (See ndgrid)
%      p       - degree of the interpolating curve ([degree_x, degree_y]).
%      method  - parametrization method. The available choices are:
%                'equally_spaced'
%                'chord_length' (default)
%   
%    OUTPUT:
%   
%      srf - the B-Spline surface.
%   
%    See The NURBS book pag. 376 for more information. As of now only the
%    chord length method is implemented.
%
% Copyright (C) 2015 Jacopo Corno
%
%    This program is free software: you can redistribute it and/or modify
%    it under the terms of the GNU General Public License as published by
%    the Free Software Foundation, either version 3 of the License, or
%    (at your option) any later version.

%    This program is distributed in the hope that it will be useful,
%    but WITHOUT ANY WARRANTY; without even the implied warranty of
%    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
%    GNU General Public License for more details.
%
%    You should have received a copy of the GNU General Public License
%    along with this program.  If not, see <http://www.gnu.org/licenses/>.
%

  if (nargin < 5 || isempty (method))
    method = 'chord_length';
  end
  
  [n, m] = size (X);
  Q = zeros (3, n, m);
  Q(1,:,:) = X;
  Q(2,:,:) = Y;
  Q(3,:,:) = Z;
  
  if (strcmpi (method, 'equally_spaced'))
    u = linspace (0, 1, n);
    v = linspace (0, 1, m);
  elseif (strcmp (method, 'chord_length'))
    u = zeros (m, n);
    for ii = 1:m
      d = sum (sqrt (sum (diff (squeeze(Q(:,:,ii))')'.^2,1)));
      u(ii,2:n) = cumsum (sqrt (sum (diff(Q(:,:,ii), [], 2).^2, 1)))/d;
%      for jj = 2:n-1 
%        u(ii,jj) = u(ii,jj-1) + norm (Q(:,jj,ii) - Q(:,jj-1,ii)) / d;
%      end
      u(ii,end) = 1;
    end
    u = mean (u);

    v = zeros (n, m);
    for ii = 1:n
      d = sum (sqrt (sum (diff (squeeze(Q(:,ii,:))')'.^2,1)));
      v(ii,2:m) = cumsum (sqrt (sum (diff(Q(:,ii,:), [], 3).^2, 1)))/d;
%      for jj = 2:m-1 
%        v(ii,jj) = v(ii,jj-1) + norm (Q(:,ii,jj) - Q(:,ii,jj-1)) / d;
%      end
      v(ii,end) = 1;
    end
    v = mean (v);
  end
  % TODO: implement centripetal method
  
  % Compute knot vectors
  knts{1} = zeros (1, n+p(1)+1);
  for jj = 2:n-p(1)
    knts{1}(jj+p(1)) = 1/p(1) * sum (u(jj:jj+p(1)-1));
  end
  knts{1}(end-p(1):end) = ones (1, p(1)+1);
  
  knts{2} = zeros (1, m+p(2)+1);
  for jj = 2:m-p(2)
    knts{2}(jj+p(2)) = 1/p(2) * sum (v(jj:jj+p(2)-1));
  end
  knts{2}(end-p(2):end) = ones (1, p(2)+1);
  
  % Interpolation
  R = zeros (size (Q));
  P = zeros (4, n, m);
  for ii = 1:m
    A = zeros (n, n);
    A(1,1) = 1;
    A(n,n) = 1;
    for jj=2:n-1
      span = findspan (n, p(1), u(jj), knts{1});
      A(jj,span-p(1)+1:span+1) = basisfun (span, u(jj), p(1), knts{1});
    end
    R(1,:,ii) = A \ squeeze(Q(1,:,ii))';
    R(2,:,ii) = A \ squeeze(Q(2,:,ii))';
    R(3,:,ii) = A \ squeeze(Q(3,:,ii))';
  end
  
  for ii = 1:n
    A = zeros (m, m);
    A(1,1) = 1;
    A(m,m) = 1;
    for jj=2:m-1
      span = findspan (m, p(2), v(jj), knts{2});
      A(jj,span-p(2)+1:span+1) = basisfun (span, v(jj), p(2), knts{2});
    end
    P(1,ii,:) = A \ squeeze(R(1,ii,:));
    P(2,ii,:) = A \ squeeze(R(2,ii,:));
    P(3,ii,:) = A \ squeeze(R(3,ii,:));
  end
  P(4,:,:) = ones (n, m);
  
  % Create B-Spline interpolant
  srf = nrbmak (P, knts);
  
end

%!demo
%! x = linspace (-3, 3, 40);
%! y = linspace (-3, 3, 40);
%! [X, Y] = meshgrid (x, y);
%! Z = peaks (X, Y);
%! 
%! srf1 = bspinterpsurf (X, Y, Z, [2 2], 'equally_spaced');
%! srf2 = bspinterpsurf (X, Y, Z, [2 2], 'chord_length');
%! figure
%! nrbkntplot(srf1)
%! title ('Approximation of the peaks functions, with the equally spaced method')
%! figure
%! nrbkntplot(srf2)
%! title ('Approximation of the peaks functions, with the chord length method')