This file is indexed.

/usr/share/octave/packages/msh-1.0.10/msh2m_geometrical_properties.m is in octave-msh 1.0.10-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
## Copyright (C) 2006,2007,2008,2009,2010  Carlo de Falco, Massimiliano Culpo
##
## This file is part of:
##     MSH - Meshing Software Package for Octave
##
##  MSH is free software; you can redistribute it and/or modify
##  it under the terms of the GNU General Public License as published by
##  the Free Software Foundation; either version 2 of the License, or
##  (at your option) any later version.
##
##  MSH is distributed in the hope that it will be useful,
##  but WITHOUT ANY WARRANTY; without even the implied warranty of
##  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##  GNU General Public License for more details.
##
##  You should have received a copy of the GNU General Public License
##  along with MSH; If not, see <http://www.gnu.org/licenses/>.
##
##  author: Carlo de Falco     <cdf _AT_ users.sourceforge.net>
##  author: Massimiliano Culpo <culpo _AT_ users.sourceforge.net>

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{varargout}]} = @
## msh2m_geometrical_properties(@var{mesh},[@var{string1},@var{string2},...])
##
## Compute @var{mesh} geometrical properties identified by input strings.
##
## Valid properties are:
## @itemize @bullet
## @item @code{"bar"}: return a matrix with size 2 times the number of mesh
## elements containing the center of mass coordinates. 
## @item @code{"cir"}: return a matrix with size 2 times the number of
## mesh elements containing the circumcenter coordinates.
## @item @code{"emidp"}: return a matrix with size 2 times the number of
## side edges containing their midpoint coordinates.
## @item @code{"slength"}: return a matrix with size 3 times the number
## of mesh elements containing the length of each element side.
## @item @code{"cdist"}: return a matrix of size 3 times the number of
## mesh elements containing  the distance among circumcenters of
## neighbouring elements. If the corresponding side lies on the edge,
## the distance between circumcenter and border edge is returned in the
## matrix.
## @item @code{"wjacdet"}: return the weigthed Jacobian determinant used
## for the numerical integration with trapezoidal rule over an element.
## @item @code{"shg"}: return a matrix of size 3 times the number of
## elements matrix containing the gradient of P1 shape functions.
## @item @code{"area"}: return a row vector containing the area of every
## element.
## @item @code{"midedge"}: return a multi-dimensional array with size 2
## times 3 times the number of elements containing the coordinates of
## the midpoint of every edge. 
## @end itemize 
##
## The output will contain the geometrical properties requested in the
## input in the same order specified in the function call.
##
## If an unexpected string is given as input, an empty vector is
## returned in output.
##
## @seealso{msh2m_topological_properties, msh3m_geometrical_properties}
## @end deftypefn

function varargout = msh2m_geometrical_properties (mesh, varargin)

  ## Check input

  if (nargin < 2) # Number of input parameters

    error (["msh2m_geometrical_properties: ", ...
            "wrong number of input parameters."]);

  elseif (! (isstruct (mesh) && isfield (mesh, "p") 
             && isfield (mesh, "t") && isfield (mesh, "e")))
  
    error (["msh2m_geometrical_properties: ", ...
            "first input is not a valid mesh structure."]);

  elseif (! iscellstr (varargin))

    error (["msh2m_geometrical_properties: ", ... 
            "only string value admitted for properties."]);
  endif
  
  ## Compute properties
  p = mesh.p;
  e = mesh.e;
  t = mesh.t;
  nelem = columns (t);
  
  [k,j,w] = coeflines (p, t, nelem); # Edge coefficients

  for nn = 1:length (varargin)
    
    request = varargin{nn};
    switch request
        
      case "bar" # Center of mass coordinates
        if (isfield (mesh, "bar"))
          varargout{nn} = mesh.bar;
        else
          [b] = coordinates (p, t, nelem, j, w, k, "bar");
          varargout{nn} = b;
          clear b;
        endif
        
      case "cir" # Circum-center coordinates
        if (isfield (mesh, "cir"))
          varargout{nn} = mesh.cir;
        else
          [b] = coordinates(p,t,nelem,j,w,k,"cir");
          varargout{nn} = b;
          clear b;
        endif

      case "emidp" # Boundary edges midpoint coordinates
        if (isfield (mesh, "emidp"))
          varargout{nn} = mesh.emidp;
        else
          b = midpoint (p, e);
          varargout{nn} = b;
          clear b;
        endif

      case "slength" # Length of every side
        if (isfield (mesh, "slength"))
          varargout{nn} = mesh.slength;
        else
          b = sidelength (p, t, nelem);
          varargout{nn} = b;
          clear b;
        endif

      case "cdist" # Distance among circumcenters of neighbouring elements
        if (isfield (mesh, "cdist"))
          varargout{nn} = mesh.cdist;
        else

          if (isfield (mesh,"cir"))
            cir = mesh.cir;
          else
            cir = coordinates (p, t, nelem, j, w, k, "cir");
          endif

          if (isfield (mesh, "n"))
            n = mesh.n;
          else      
            n = msh2m_topological_properties (mesh, "n");
          endif

          b = distance (cir, n, nelem);
          semib = semidistance (cir, nelem, j, w, k);
          border = isnan (n);
          index1 = find (border(1,:));
          index2 = find (border(2,:));
          index3 = find (border(3,:));
          b(1,index1) = semib (1,index1);
          b(2,index2) = semib (2,index2);
          b(3,index3) = semib (3,index3);
          varargout{nn} = b;
          clear b semib index1 index2 index3 border;
        endif

      case "wjacdet" # Weighted Jacobian determinant
        if (isfield (mesh, "wjacdet"))
          varargout{nn} = mesh.wjacdet;
        else
          b = computearea (p, e, t, "wjac");
          varargout{nn} = b;
          clear b
        endif
        
      case "area" # Area of the elements
        if (isfield (mesh, "area"))
          varargout{nn} = mesh.area;
        else
          b = computearea (p, e, t, "area");
          varargout{nn} = b;
          clear b
        endif
        
      case "shg" # Gradient of hat functions
        if (isfield (mesh, "shg"))
          varargout{nn} = mesh.shg;
        else
          b = shapegrad (p, t);
          varargout{nn} = b;
          clear b
        endif

      case "midedge" # Mid-edge coordinates
        if (isfield (mesh, "midedge"))
          varargout{nn} = mesh.midedge;
        else
          b = midedge (p, t, nelem);
          varargout{nn} = b;
          clear b;
        endif

      otherwise
        warning (["msh2m_geometrical_properties: ", ...
                  "unexpected value in property string. ", ...
                  "Empty vector passed as output."])
        varargout{nn} = [];
    endswitch

  endfor

endfunction

function [k, j, w] = coeflines (p, t, nelem)

  ## Edges are described by the analytical expression:
  ##
  ## k*x + j*y + w = 0
  ##
  ## Coefficients k,j,w are stored in matrixes
  
  ## i-th edge list, i =1,2,3
  s1 = sort (t(2:3,:),1);
  s2 = sort (t([3,1],:),1);
  s3 = sort (t(1:2,:),1);  
  ## Initialization of the matrix data-structure
  k = ones(3,nelem);
  j = ones(3,nelem);
  w = ones(3,nelem);
  ## Searching for lines parallel to x axis
  [i1] = find ((p(2,s1(2,:)) - p(2,s1(1,:))) != 0);
  noti1 = setdiff([1:nelem], i1);
  [i2] = find ((p(2,s2(2,:)) - p(2,s2(1,:))) != 0);
  noti2 = setdiff([1:nelem], i2);
  [i3] = find ((p(2,s3(2,:)) - p(2,s3(1,:))) != 0);
  noti3 = setdiff([1:nelem], i3);
  ## Computation of the coefficients
  ## Edge 1
  j(1,i1) = (p(1,s1(1,i1)) - p(1,s1(2,i1))) ./ ...
            (p(2,s1(2,i1)) - p(2,s1(1,i1)));
  w(1,i1) = -(p(1,s1(1,i1)) + p(2,s1(1,i1)).*j(1,i1));
  k(1,noti1) = 0;
  j(1,noti1) = 1;
  w(1,noti1) = - p(2,s1(1,noti1));
  ## Edge 2
  j(2,i2) = (p(1,s2(1,i2)) - p(1,s2(2,i2))) ./ ...
            (p(2,s2(2,i2)) - p(2,s2(1,i2)));
  w(2,i2) = -(p(1,s2(1,i2)) + p(2,s2(1,i2)).*j(2,i2));
  k(2,noti2) = 0;
  j(2,noti2) = 1;
  w(2,noti2) = - p(2,s2(1,noti2));
  ## Edge 3
  j(3,i3) = (p(1,s3(1,i3)) - p(1,s3(2,i3))) ./ ...
            (p(2,s3(2,i3)) - p(2,s3(1,i3)));
  w(3,i3) = -(p(1,s3(1,i3)) + p(2,s3(1,i3)).*j(3,i3));
  k(3,noti3) = 0;
  j(3,noti3) = 1;
  w(3,noti3) = - p(2,s3(1,noti3));
endfunction

function b = coordinates (p, t, nelem, j, w, k, string)

  ## Compute the coordinates of the geometrical entity specified by string

  ## Initialization of the output vectors
  b = zeros (2, nelem);
  switch string
    case "bar"
      b(1,:) = (p(1,t(1,:)) + p(1,t(2,:)) + p(1,t(3,:))) / 3;
      b(2,:) = (p(2,t(1,:)) + p(2,t(2,:)) + p(2,t(3,:))) / 3;
    case "cir"
      ## Computation of the midpoint of the first two edges
      mid1 = zeros (2, nelem);
      mid2 = zeros (2, nelem);
      ## X coordinate
      mid1(1,:) = (p(1,t(2,:)) + p(1,t(3,:))) / 2;
      mid2(1,:) = (p(1,t(3,:)) + p(1,t(1,:))) / 2;
      ## Y coordinate
      mid1(2,:) = (p(2,t(2,:)) + p(2,t(3,:))) / 2;
      mid2(2,:) = (p(2,t(3,:)) + p(2,t(1,:))) / 2;
      ## Computation of the intersect between axis 1 and axis 2
      ## Searching for element with edge 1 parallel to x-axes
      parx = find (j(1,:) == 0);
      notparx = setdiff (1:nelem, parx);
      coefy = zeros (1, nelem);
      ## If it is not parallel
      coefy(notparx) = ((j(2,notparx)./j(1,notparx)) .* 
                        k(1,notparx) - k(2,notparx)).^(-1);

      b(2,notparx) = coefy(1,notparx) .* ...
                     (j(2,notparx) .* mid2(1,notparx) - 
                      k(2,notparx) .* mid2(2,notparx) + 
                      k(1,notparx) ./ j(1,notparx) .* 
                      j(2,notparx) .* mid1(2,notparx) - 
                      j(2,notparx) .* mid1(1,notparx));

      b(1,notparx) = (k(1,notparx) .* b(2,notparx) + 
                      j(1,notparx) .* mid1(1,notparx) - 
                      k(1,notparx) .* mid1(2,notparx)) ./ ...
                     j(1,notparx);
      ## If it is parallel
      b(2,parx) = mid1(2,parx);
      b(1,parx) = k(2,parx) ./ j(2,parx) .* ...
                  (b(2,parx) - mid2(2,parx)) + ...
                  mid2(1,parx);
  endswitch
endfunction

function [b] = midpoint(p,e)

  ## Compute the coordinates of the midpoint on the boundary edges

  b = zeros(2,columns(e));
  b(1,:) = (p(1,e(1,:)) + p(1,e(2,:)))./2;
  b(2,:) = (p(2,e(1,:)) + p(2,e(2,:)))./2;
endfunction

function [l] = sidelength(p,t,nelem)

  ## Compute the length of every side
  
  l = zeros(3, nelem);
  ## i-th edge list, i =1,2,3
  s1 = sort (t(2:3,:),1);
  s2 = sort (t([3,1],:),1);
  s3 = sort (t(1:2,:),1);
  ## First side length
  l(1,:) = sqrt ((p(1,s1(1,:)) - p(1,s1(2,:))).^2 + 
                 (p(2,s1(1,:)) - p(2,s1(2,:))).^2);
  ## Second side length
  l(2,:) = sqrt ((p(1,s2(1,:)) - p(1,s2(2,:))).^2 + 
                 (p(2,s2(1,:)) - p(2,s2(2,:))).^2);
  ## Third side length
  l(3,:) = sqrt ((p(1,s3(1,:)) - p(1,s3(2,:))).^2 +
                 (p(2,s3(1,:)) - p(2,s3(2,:))).^2);
endfunction

function [d] = semidistance(b,nelem,j,w,k)

  ## Compute the distance to the sides of the nodes with coordinates b
  ## The edges are described by the analytical expression:
  ##
  ## k*x + j*y + w = 0
  ##
  ## The coefficients k,j,w are stored in matrixes
  
  ## Initialization of the distance output vector
  d = zeros(3, nelem);
  ## Computation of the distances from the geometrical entity to the edges
  d(1,:) = abs (k(1,:).*b(1,:) + j(1,:).*b(2,:) + w(1,:)) ./ ...
           (sqrt (k(1,:).^2 + j(1,:).^2));
  d(2,:) = abs (k(2,:).*b(1,:) + j(2,:).*b(2,:) + w(2,:)) ./ ...
           (sqrt (k(2,:).^2 + j(2,:).^2));
  d(3,:) = abs (k(3,:).*b(1,:) + j(3,:).*b(2,:) + w(3,:)) ./ ...
           (sqrt (k(3,:).^2 + j(3,:).^2));
endfunction

function [d] = distance(b,n,nelem)
  
  ## Compute the distance between two neighbouring entities
  
  ## Initialization of the distance output vector
  d = NaN(3, nelem);
  ## Trg not on the geometrical border
  border = isnan(n);
  [index1] = find (border(1,:) == 0);
  [index2] = find (border(2,:) == 0);
  [index3] = find (border(3,:) == 0);
  ## Computation of the distances between two neighboring geometrical entities
  d(1,index1) = sqrt ((b(1,index1) - b(1,n(1,index1))).^2 + 
                      (b(2,index1) - b(2,n(1,index1))).^2);
  d(2,index2) = sqrt ((b(1,index2) - b(1,n(2,index2))).^2 + 
                      (b(2,index2) - b(2,n(2,index2))).^2);
  d(3,index3) = sqrt ((b(1,index3) - b(1,n(3,index3))).^2 +
                      (b(2,index3) - b(2,n(3,index3))).^2);
endfunction

function [b] = computearea(p,e,t,string)

  ## Compute the area of every element in the mesh

  weight = [1/3 1/3 1/3];
  areakk = 1/2;
  Nelements = columns(t);

  jac([1,2],:) = [p(1,t(2,:))-p(1,t(1,:));
                  p(1,t(3,:))-p(1,t(1,:))];
  jac([3,4],:) = [p(2,t(2,:))-p(2,t(1,:));
                  p(2,t(3,:))-p(2,t(1,:))];
  jacdet = jac(1,:).*jac(4,:)-jac(2,:).*jac(3,:);

  degen = find (jacdet <= 0);
  if ~isempty(degen)
    ## XXX FIXME: there should be a -verbose option to allow to see this
    ## fprintf(1,"invalid mesh element:  %d  fixing...\n",degen);
    t(1:3,degen) = t([2,1,3],degen);
    jac([1,2],degen) = [p(1,t(2,degen))-p(1,t(1,degen));
                          p(1,t(3,degen))-p(1,t(1,degen))];
    jac([3,4],degen) = [p(2,t(2,degen))-p(2,t(1,degen));
                        p(2,t(3,degen))-p(2,t(1,degen))];
    jacdet(degen) = jac(1,degen) .* jac(4,degen) - ...
                    jac(2,degen) .* jac(3,degen);
  endif

  for inode = 1:3
    wjacdet(inode,:) = areakk .* jacdet .* weight(inode);
  endfor

  if string == "wjac"
    b = wjacdet();
  elseif string == "area"
    b = sum(wjacdet)';
  endif
  
endfunction

function [d] = midedge(p,t,nelem)
  ## Compute the midpoint coordinates for every edge
  s1 = t(2:3,:); s2 = t([3,1],:); s3 = t(1:2,:);
  edge = cell(3,1);
  edge(1) = s1; edge(2) = s2; edge(3) = s3;
  d = zeros(2,3,nelem); #Lati * Coordinate * Elementi
  for jj = 1:3
    tempx = (p(1,edge{jj}(1,:)) + p(1,edge{jj}(2,:)))/2;
    tempy = (p(2,edge{jj}(1,:)) + p(2,edge{jj}(2,:)))/2;
    temp = [tempx; tempy];
    d(:,jj,:) = temp;
  endfor
endfunction

function [shg] = shapegrad(p,t)
  
  ## Compute  the gradient of the hat functions
  
  x0 = p(1,t(1,:));
  y0 = p(2,t(1,:));
  x1 = p(1,t(2,:));
  y1 = p(2,t(2,:));
  x2 = p(1,t(3,:));
  y2 = p(2,t(3,:));

  denom = (-(x1.*y0) + x2.*y0 + x0.*y1 - x2.*y1 - x0.*y2 + x1.*y2);
  shg(1,1,:)  =  (y1 - y2)./denom;
  shg(2,1,:)  = -(x1 - x2)./denom;
  shg(1,2,:)  = -(y0 - y2)./denom;
  shg(2,2,:)  =  (x0 - x2)./denom;
  shg(1,3,:)  =  (y0 - y1)./denom;
  shg(2,3,:)  = -(x0 - x1)./denom;
endfunction

%!test
%! [mesh] = msh2m_structured_mesh(0:.5:1, 0:.5:1, 1, 1:4, "left");
%! [mesh.bar, mesh.cir, mesh.emidp, mesh.slength, mesh.cdist, mesh.area,mesh.midedge] = msh2m_geometrical_properties(mesh,"bar","cir","emidp","slength","cdist","area","midedge");
%! bar = [0.16667   0.16667   0.66667   0.66667   0.33333   0.33333   0.83333   0.83333
%!        0.16667   0.66667   0.16667   0.66667   0.33333   0.83333   0.33333   0.83333];
%! cir = [0.25000   0.25000   0.75000   0.75000   0.25000   0.25000   0.75000   0.75000
%!        0.25000   0.75000   0.25000   0.75000   0.25000   0.75000   0.25000   0.75000];
%! emidp =[0.25000   0.75000   1.00000   1.00000   0.25000   0.75000   0.00000   0.00000
%!         0.00000   0.00000   0.25000   0.75000   1.00000   1.00000   0.25000   0.75000];
%! slength =[0.70711   0.70711   0.70711   0.70711   0.50000   0.50000   0.50000   0.50000
%!           0.50000   0.50000   0.50000   0.50000   0.50000   0.50000   0.50000   0.50000
%!           0.50000   0.50000   0.50000   0.50000   0.70711   0.70711   0.70711   0.70711];
%! cdist = [0.00000   0.00000   0.00000   0.00000   0.50000   0.50000   0.25000   0.25000
%!          0.25000   0.25000   0.50000   0.50000   0.50000   0.25000   0.50000   0.25000
%!          0.25000   0.50000   0.25000   0.50000   0.00000   0.00000   0.00000   0.00000];
%! area = [ 0.12500 ;  0.12500 ;  0.12500 ;  0.12500 ;  0.12500 ;  0.12500 ;  0.12500 ;  0.12500];
%! midedge = zeros(2,3,8);
%! midedge(:,:,1) = [0.25000   0.00000   0.25000
%!                   0.25000   0.25000   0.00000];
%! midedge(:,:,2) = [0.25000   0.00000   0.25000
%!                   0.75000   0.75000   0.50000];
%! midedge(:,:,3) = [0.75000   0.50000   0.75000
%!                   0.25000   0.25000   0.00000];
%! midedge(:,:,4) = [0.75000   0.50000   0.75000
%!                   0.75000   0.75000   0.50000];
%! midedge(:,:,5) = [0.50000   0.25000   0.25000
%!                   0.25000   0.50000   0.25000];
%! midedge(:,:,6) = [0.50000   0.25000   0.25000
%!                   0.75000   1.00000   0.75000];
%! midedge(:,:,7) = [1.00000   0.75000   0.75000
%!                   0.25000   0.50000   0.25000];
%! midedge(:,:,8) = [1.00000   0.75000   0.75000
%!                   0.75000   1.00000   0.75000];
%! toll = 1e-4;
%! assert(mesh.bar,bar,toll);
%! assert(mesh.cir,cir,toll);
%! assert(mesh.emidp,emidp,toll);
%! assert(mesh.slength,slength,toll);
%! assert(mesh.cdist,cdist,toll);
%! assert(mesh.area,area,toll);
%! assert(mesh.midedge,midedge,toll);