This file is indexed.

/usr/share/octave/packages/miscellaneous-1.2.1/doc-cache is in octave-miscellaneous 1.2.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
# doc-cache created by Octave 4.2.1
# name: cache
# type: cell
# rows: 3
# columns: 31
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
asci


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 293
 -- Function: [STRING] = asci ([COLUMNS])
     Print ASCII table.

     This function has been renamed 'ascii' (note double i at the end of
     its name) and will be removed from future versions of the
     miscellaneous package.  Please refer to 'ascii' help text for its
     documentation.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Print ASCII table.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ascii


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 559
 -- Function File: ascii ()
 -- Function File: ascii (COLUMNS)
     Print ASCII table.

     If this function is called without any input argument and without
     any output argument then prints a nice ASCII-table (excluding
     special characters with hexcode 0x00 to 0x20).  The input argument
     COLUMNS specifies the number of columns and defaults to 4.

     If it is called with one output argument then return the ASCII
     table as a string without displaying anything.  Run 'demo ascii'
     for examples.

     See also: char, isascii, toascii.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 18
Print ASCII table.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
chebyshevpoly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 522
 -- Function File: COEFS= chebyshevpoly (KIND,ORDER,X)

     Compute the coefficients of the Chebyshev polynomial, given the
     ORDER.  We calculate the Chebyshev polynomial using the recurrence
     relations Tn+1(x) = (2*x*Tn(x) - Tn-1(x)).  The KIND can be set to
     compute the first or second kind Chebyshev polynomial.

     If the value X is specified, the polynomial is evaluated at X,
     otherwise just the coefficients of the polynomial are returned.

     This is NOT the generalized Chebyshev polynomial.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Compute the coefficients of the Chebyshev polynomial, given the ORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
clip


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 399
 -- Function File: X = clip (X)
 -- Function File: X = clip (X, HI)
 -- Function File: X = clip (X, [LO, HI])
     Clip X values outside the range.to the value at the boundary of the
     range.

     Range boundaries, LO and HI, default to 0 and 1 respectively.

     X = clip (X) Clip to range [0, 1]

     X = clip (X, HI) Clip to range [0, HI]

     X = clip (X, [LO, HI]) Clip to range [LO, HI]


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 74
Clip X values outside the range.to the value at the boundary of the
range.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
colorboard


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1513
 -- Function File: colorboard (M, PALETTE, OPTIONS)
     Displays a color board corresponding to a numeric matrix M.  M
     should contain zero-based indices of colors.  The available range
     of indices is given by the PALETTE argument, which can be one of
     the following:

        * "b&w" Black & white, using reverse video mode.  This is the
          default if M is logical.
        * "ansi8" The standard ANSI 8 color palette.  This is the
          default unless M is logical.
        * "aix16" The AIXTerm extended 16-color palette.  Uses codes
          100:107 for bright colors.
        * "xterm16" The first 16 system colors of the Xterm 256-color
          palette.
        * "xterm216" The 6x6x6 color cube of the Xterm 256-color
          palette.  In this case, matrix can also be passed as a MxNx3
          RGB array with values 0..5.
        * "grayscale" The 24 grayscale levels of the Xterm 256-color
          palette.
        * "xterm256" The full Xterm 256-color palette.  The three above
          palettes together.

     OPTIONS comprises additional options.  The recognized options are:

        * "indent" The number of spaces by which the board is indented.
          Default 2.
        * "spaces" The number of spaces forming one field.  Default 2.
        * "horizontalseparator" The character used for horizontal
          separation of the table.  Default "#".
        * "verticalseparator" The character used for vertical separation
          of the table.  Default "|".


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Displays a color board corresponding to a numeric matrix M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
csv2latex


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1647
 Creates a latex file from a csv file. The generated latex file contains a 
 tabular with all values of the csv file. The tabular can be decorated with 
 row and column titles. The generated latex file can be inserted in any latex
 document by using the '\input{latex file name without .tex}' statement.

 Usage: 
  - csv2latex(csv_file, csv_sep, latex_file)
  - csv2latex(csv_file, csv_sep, latex_file, tabular_alignments)
  - csv2latex(csv_file, csv_sep, latex_file, tabular_alignments, has_hline)
  - csv2latex(csv_file, csv_sep, latex_file,   
              tabular_alignments, has_hline, column_titles)
  - csv2latex(csv_file, csv_sep, latex_file, tabular_alignments,
              has_hline, column_titles, row_titles)

 Parameters:
  csv_file - the path to an existing csv file
  csv_sep - the seperator of the csv values
  latex_file - the path of the latex file to create     
  tabular_alignments - the tabular alignment preamble (default = {'l','l',...})
  has_hline - indicates horizontal line seperator (default = false)
  column_titles - array with the column titles of the tabular (default = {})
  row_titles - array with the row titles of the tabular (default = {})

 Examples:
  # creates the latex file 'example.tex' from the csv file 'example.csv' 
  csv2latex("example.csv", '\t', "example.tex");

  # creates the latex file with horizontal and vertical lines
  csv2latex('example.csv', '\t', 'example.tex', {'|l|', 'l|'}, true);
 
  # creates the latex file with row and column titles
  csv2latex('example.csv', '\t', 'example.tex', {'|l|', 'l|'}, true, 
            {'Column 1', 'Column 2', 'Column 3'}, {'Row 1', 'Row 2'});



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
 Creates a latex file from a csv file.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
gameoflife


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 332
 -- Function File: B = gameoflife (A, ngen, delay)
     Runs the Conways' game of life from a given initial state for a
     given number of generations and visualizes the process.  If ngen is
     infinity, the process is run as long as A changes.  Delay sets the
     pause between two frames.  If zero, visualization is not done.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Runs the Conways' game of life from a given initial state for a given
number of 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
hermitepoly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 351
 -- Function File: COEFS= hermitepoly (ORDER,X)

     Compute the coefficients of the Hermite polynomial, given the
     ORDER.  We calculate the Hermite polynomial using the recurrence
     relations, Hn+1(x) = 2x.Hn(x) - 2nHn-1(x).

     If the value X is specified, the polynomial is also evaluated,
     otherwise just the return the coefficients.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Compute the coefficients of the Hermite polynomial, given the ORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
hilbert_curve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 319
 -- Function file: X, Y hilbert_curve (N)
     Creates an iteration of the Hilbert space-filling curve with N
     points.  The argument N must be of the form '2^M', where M is an
     integer greater than 0.

          n = 8
          [x ,y] = hilbert_curve (n);
          line (x, y, "linewidth", 4, "color", "blue");


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Creates an iteration of the Hilbert space-filling curve with N points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
infoskeleton


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 327
 -- Function File: infoskeleton(PROTOTYPE, INDEX_STR, SEE_ALSO)
     Generate TeXinfo skeleton documentation of PROTOTYPE.

     Optionally INDEX_STR and SEE_ALSO can be specified.

     Usage of this function is typically,
          infoskeleton('[V,Q] = eig( A )','linear algebra','eigs, chol, qr, det')

     See also: info.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Generate TeXinfo skeleton documentation of PROTOTYPE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
laguerrepoly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 460
 -- Function File: COEFS= laguerrepoly (ORDER,X)

     Compute the coefficients of the Laguerre polynomial, given the
     ORDER.  We calculate the Laguerre polynomial using the recurrence
     relations, Ln+1(x) = inv(n+1)*((2n+1-x)Ln(x) - nLn-1(x)).

     If the value X is specified, the polynomial is also evaluated,
     otherwise just the return the coefficients of the polynomial are
     returned.

     This is NOT the generalized Laguerre polynomial.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Compute the coefficients of the Laguerre polynomial, given the ORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
lauchli


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 411
 -- Function File: A = lauchli (N)
 -- Function File: A = lauchli (N,MU)
     Creates the matrix [ ones(1,N); MU*eye(N) ] The value MU defaults
     to sqrt(eps).  This is an ill-conditioned system for testing the
     accuracy of the QR routine.

                A = lauchli(15);
                [Q, R] = qr(A);
                norm(Q*R - A)
                norm(Q'*Q - eye(rows(Q)))

See also: ones,zeros,eye.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 79
Creates the matrix [ ones(1,N); MU*eye(N) ] The value MU defaults to
sqrt(eps).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
legendrepoly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 461
 -- Function File: COEFS= legendrepoly (ORDER,X)

     Compute the coefficients of the Legendre polynomial, given the
     ORDER.  We calculate the Legendre polynomial using the recurrence
     relations, Pn+1(x) = inv(n+1)*((2n+1)*x*Pn(x) - nPn-1(x)).

     If the value X is specified, the polynomial is also evaluated,
     otherwise just the return the coefficients of the polynomial are
     returned.

     This is NOT the generalized Legendre polynomial.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Compute the coefficients of the Legendre polynomial, given the ORDER.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
match


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1003
 -- Function File: RESULT = match ( FUN_HANDLE, ITERABLE )
     match is filter, like Lisp's ( & numerous other language's )
     function for Python has a built-in filter function which takes two
     arguments, a function and a list, and returns a list.  'match'
     performs the same operation like filter in Python.  The match
     applies the function to each of the element in the ITERABLE and
     collects that the result of a function applied to each of the data
     structure's elements in turn, and the return values are collected
     as a list of input arguments, whenever the function-result is
     'true' in Octave sense.  Anything (1,true,?)  evaluating to true,
     the argument is saved into the return value.

     FUN_HANDLE can either be a function name string or a function
     handle (recommended).

     Typically you can use it as,
          match(@(x) ( x >= 1 ), [-1 0 1 2])
                =>   1   2

     See also: reduce, cellfun, arrayfun, cellfun, structfun, spfun.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
match is filter, like Lisp's ( & numerous other language's ) function
for Python



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
normc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 268
 -- Function File: X = normc (M)
     Normalize the columns of a matrix to a length of 1 and return the
     matrix.

            M=[1,2; 3,4];
            normc(M)

            ans =

            0.31623   0.44721
            0.94868   0.89443


     See also: normr.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Normalize the columns of a matrix to a length of 1 and return the
matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
normr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 265
 -- Function File: X = normr (M)
     Normalize the rows of a matrix to a length of 1 and return the
     matrix.

            M=[1,2; 3,4];
            normr(M)

            ans =

            0.44721   0.89443
            0.60000   0.80000


     See also: normc.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Normalize the rows of a matrix to a length of 1 and return the matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
nze


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 145
 -- Function File: [Y, F] = nze (X)
     Extract nonzero elements of X.  Equivalent to 'X(X != 0)'.
     Optionally, returns also linear indices.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Extract nonzero elements of X.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
peano_curve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 313
 -- Function file: X, Y peano_curve (N)
     Creates an iteration of the Peano space-filling curve with N
     points.  The argument N must be of the form '3^M', where M is an
     integer greater than 0.

          n = 9;
          [x, y] = peano_curve (n);
          line (x, y, "linewidth", 4, "color", "red");


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Creates an iteration of the Peano space-filling curve with N points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 17
physical_constant


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 827
 -- Function File: [NAMES] = physical_constant
 -- Function File: [VAL, UNCERTAINTY, UNIT] = physical_constant (NAME)
 -- Function File: [CONSTANTS] = physical_constant ("all")
     Get physical constant ARG.

     If no arguments are given, returns a cell array with all possible
     NAMEs.  Alternatively, NAME can be 'all' in which case VAL is a
     structure array with 4 fields (name, value, uncertainty, units).

     Since the long list of values needs to be parsed on each call to
     this function it is much more efficient to store the values in a
     variable rather make multiple calls to this function with the same
     argument

     The values are the ones recommended by CODATA. This function was
     autogenerated on Wed Apr 25 22:17:07 2012 from NIST database at
     <http://physics.nist.gov/constants>


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 26
Get physical constant ARG.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
publish


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1763
 -- Function File: publish (FILENAME)
 -- Function File: publish (FILENAME, OPTIONS)
     Produces latex reports from scripts.

          publish (MY_SCRIPT)

     where the argument is a string that contains the file name of the
     script we want to report.

     If two arguments are given, they are interpreted as follows.

          publish (FILENAME, [OPTION, VALUE, ...])

     The following options are available:

        * format

          the only available format values are the strings 'latex' and
          'html'.

        * imageFormat:

          string that specifies the image format, valid formats are
          'pdf', 'png', and 'jpg'(or 'jpeg').

        * showCode:

          boolean value that specifies if the source code will be
          included in the report.

        * evalCode:

          boolean value that specifies if execution results will be
          included in the report.

     Default OPTIONS

        * format = latex

        * imageFormat = pdf

        * showCode = 1

        * evalCode = 1

     Remarks

        * Any additional non-valid field is removed without
          notification.

        * To include several figures in the resulting report you must
          use figure with a unique number for each one of them.

        * You do not have to save the figures manually, publish will do
          it for you.

        * The functions works only for the current path and no way ...
          to specify other path is allowed.

     Assume you have the script 'myscript.m' which looks like

          x = 0:0.1:pi;
          y = sin(x)
          figure(1)
          plot(x,y);
          figure(2)
          plot(x,y.^2);

     You can then call publish with default OPTIONS

          publish("myscript")


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Produces latex reports from scripts.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
read_options


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1788
 -- Function File: [OP,NREAD] = read_options ( args, varargin )
     The function read_options parses arguments to a function as,
     [ops,nread] = read_options (args,...)  - Read options

     The input being ARGS a list of options and values.  The options can
     be any of the following,

     'op0' , string : Space-separated names of opt taking no argument
     <">

     'op1' , string : Space-separated names of opt taking one argument
     <">

     'extra' , string : Name of nameless trailing arguments.  <">

     'default', struct : Struct holding default option values <none>

     'prefix' , int : If false, only accept whole opt names.  Otherwise,
     <0> recognize opt from first chars, and choose shortest if many
     opts start alike.

     'nocase' , int : If set, ignore case in option names <0>

     'quiet' , int : Behavior when a non-string or unknown opt is met
     <0> 0 - Produce an error 1 - Return quietly (can be diagnosed by
     checking 'nread')

     'skipnan', int : Ignore NaNs if there is a default value.  Note :
     At least one of 'op0' or 'op1' should be specified.

     The output variables are, OPS : struct : Struct whose key/values
     are option names/values NREAD : int : Number of elements of args
     that were read

     USAGE
          # Define options and defaults
          op0 = "is_man is_plane flies"
          default = struct ("is_man",1, "flies",0);

                                       # Read the options

          s = read_options (list (all_va_args), "op0",op0,"default",default)

                                       # Create variables w/ same name as options

          [is_man, is_plane, flies] = getfields (s,"is_man", "is_plane", "flies")
          pre 2.1.39 function [op,nread] = read_options (args, ...)


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
The function read_options parses arguments to a function as, [ops,nread]
= read_



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
reduce


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 932
 -- Function File: X = reduce (FUNCTION, SEQUENCE,INITIALIZER)
 -- Function File: X = reduce (FUNCTION, SEQUENCE)
     Implements the 'reduce' operator like in Lisp, or Python.  Apply
     function of two arguments cumulatively to the items of sequence,
     from left to right, so as to reduce the sequence to a single value.
     For example, reduce(@(x,y)(x+y), [1, 2, 3, 4, 5]) calculates
     ((((1+2)+3)+4)+5).  The left argument, x, is the accumulated value
     and the right argument, y, is the update value from the sequence.
     If the optional initializer is present, it is placed before the
     items of the sequence in the calculation, and serves as a default
     when the sequence is empty.  If initializer is not given and
     sequence contains only one item, the first item is returned.

           reduce(@add,[1:10])
           => 55
               reduce(@(x,y)(x*y),[1:7])
           => 5040  (actually, 7!)


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Implements the 'reduce' operator like in Lisp, or Python.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rolldices


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 372
 -- Function File: rolldices (N)
 -- Function File: rolldices (N, NREP, DELAY)
     Returns N random numbers from the 1:6 range, displaying a visual
     selection effect.

     NREP sets the number of rolls, DELAY specifies time between
     successive rolls in seconds.  Default is nrep = 25 and delay = 0.1.

     Requires a terminal with ANSI escape sequences enabled.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Returns N random numbers from the 1:6 range, displaying a visual
selection effec



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
slurp_file


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 290
 -- Function File: S = slurp_file ( f )
     slurp_file return a whole text file F as a string S.

     F : string : filename S : string : contents of the file

     If F is not an absolute filename, and is not an immediately
     accessible file, slurp_file () will look for F in the path.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 52
slurp_file return a whole text file F as a string S.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
solvesudoku


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 312
 -- Function File: [X, NTRIAL] = solvesudoku (S)
     Solves a classical 9x9 sudoku.  S should be a 9x9 array with
     numbers from 0:9.  0 indicates empty field.  Returns the filled
     table or empty matrix if no solution exists.  If requested, NTRIAL
     returns the number of trial-and-error steps needed.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 30
Solves a classical 9x9 sudoku.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
textable


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2687
 -- Function File: textable (MATRIX)
 -- Function File: textable (MATRIX, PARAMS, ...)
     Save MATRIX in LaTeX format (tabular or array).

     The input matrix must be numeric and two dimensional.

     The generated LaTeX source can be saved directly to a file with the
     option 'file'.  The file can then be inserted in any latex document
     by using the '\input{latex file name without .tex}' statement.

     Available parameters are:
        * 'file': filename to save the generated LaTeX source.  Requires
          a string as value.
        * 'rlines': display row lines.
        * 'clines': display column lines.
        * 'align': column alignment.  Valid values are 'l', 'c' and 'r'
          for center, left and right (default).
        * 'math': create table in array environment inside displaymath
          environment.  It requires a string as value which will be the
          name of the matrix.

     The basic usage is to generate the source for a table without lines
     and right alignment (default values):
          textable (data)
              =>
                 \begin{tabular}{rrr}
                     0.889283 & 0.949328 & 0.205663 \\
                     0.225978 & 0.426528 & 0.189561 \\
                     0.245896 & 0.466162 & 0.225864 \\
                 \end{tabular}

     Alternatively, the source can be saved directly into a file:
          textable (data, "file", "data.tex");

     The appearance of the table can be controled with switches and key
     values.  The following generates a table with both row and column
     lines (rlines and clines), and center alignment:
          textable (data, "rlines", "clines", "align", "c")
              =>
                 \begin{tabular}{|c|c|c|}
                     \hline
                     0.889283 & 0.949328 & 0.205663 \\
                     \hline
                     0.225978 & 0.426528 & 0.189561 \\
                     \hline
                     0.245896 & 0.466162 & 0.225864 \\
                     \hline
                 \end{tabular}

     Finnally, for math mode, it is also possible to place the matrix in
     an array environment and name the matrix:
          textable (data, "math", "matrix-name")
              =>
                 \begin{displaymath}
                   \mathbf{matrix-name} =
                   \left(
                   \begin{array}{*{ 3 }{rrr}}
                     0.889283 & 0.949328 & 0.205663 \\
                     0.225978 & 0.426528 & 0.189561 \\
                     0.245896 & 0.466162 & 0.225864 \\
                   \end{array}
                   \right)
                 \end{displaymath}

     See also: csv2latex, publish.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Save MATRIX in LaTeX format (tabular or array).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
truncate


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 795
 -- Function File: Y = truncate (X, ORDER, METHOD)
 -- Function File: Y = truncate (..., METHOD)
     Truncates X to ORDER of magnitude.

     The optional argument METHOD can be a hanlde to a function used to
     truncate the number.  Default is 'round'.

     Examples:
             format long
             x = 987654321.123456789;
             order = [3:-1:0 -(1:3)]';
             y = truncate (x,order)
          y =
            987654000.000000
            987654300.000000
            987654320.000000
            987654321.000000
            987654321.100000
            987654321.120000
            987654321.123000

             format
             [truncate(0.127,-2), truncate(0.127,-2,@floor)]
          ans =
             0.13000   0.12000


     See also: round,fix,ceil,floor.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 34
Truncates X to ORDER of magnitude.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
units


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 713
 -- Function File: units (FROMUNIT, TOUNIT)
 -- Function File: units (FROMUNIT, TOUNIT, X)
     Return the conversion factor from FROMUNIT to TOUNIT measurements.

     This is an octave interface to the *GNU Units* program which comes
     with an annotated, extendable database defining over two thousand
     measurement units.  See 'man units' or
     <http://www.gnu.org/software/units> for more information.  If the
     optional argument X is supplied, return that argument multiplied by
     the conversion factor.  For example, to convert three values from
     miles per hour into meters per second:

          units ("mile/hr", "m/sec", [30, 55, 75])
          ans =

            13.411  24.587  33.528


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Return the conversion factor from FROMUNIT to TOUNIT measurements.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
z_curve


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 307
 -- Function file: X, Y z_curve (N)
     Creates an iteration of the Z-order space-filling curve with N
     points.  The argument N must be of the form '2^M', where M is an
     integer greater than 0.

          n = 8
          [x ,y] = z_curve (n);
          line (x, y, "linewidth", 4, "color", "blue");


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 70
Creates an iteration of the Z-order space-filling curve with N points.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zagzig


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 605
 -- Function File: zagzig (MTRX)
     Returns zagzig walk-off of the elements of MTRX.  Essentially it
     walks the matrix in a Z-fashion.

     mat = 1 4 7 2 5 8 3 6 9 then zagzag(mat) gives the output, [1 4 2 3
     5 7 8 6 9], by walking as shown in the figure from pt 1 in that
     order of output.  The argument MTRX should be a MxN matrix.  One
     use of zagzig the use with picking up DCT coefficients like in the
     JPEG algorithm for compression.

     An example of zagzig use:
          mat = reshape(1:9,3,3);
          zagzag(mat)
          ans =[1 4 2 3 5 7 8 6 9]


See also: zigzag.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Returns zagzig walk-off of the elements of MTRX.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
zigzag


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 506
 -- Function File: zigzag (MTRX)
     Returns zigzag walk-off of the elements of MTRX.  Essentially it
     walks the matrix in a Z-fashion.

     mat = 1 4 7 2 5 8 3 6 9 then zigzag(mat) gives the output, [1 2 4 7
     5 3 6 8 9], by walking as shown in the figure from pt 1 in that
     order of output.  The argument MTRX should be a MxN matrix

     An example of zagzig use:
          mat = reshape(1:9,3,3);
          zigzag(mat)
          ans =[1   2   4   7   5   3   6   8   9]


See also: zagzig.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Returns zigzag walk-off of the elements of MTRX.