This file is indexed.

/usr/share/octave/packages/control-3.0.0/spaconred.m is in octave-control 3.0.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
## Copyright (C) 2009-2015   Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn{Function File} {[@var{Kr}, @var{info}] =} spaconred (@var{G}, @var{K}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} spaconred (@var{G}, @var{K}, @var{ncr}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} spaconred (@var{G}, @var{K}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{Kr}, @var{info}] =} spaconred (@var{G}, @var{K}, @var{ncr}, @var{opt}, @dots{})
##
## Controller reduction by frequency-weighted Singular Perturbation Approximation (SPA).
## Given a plant @var{G} and a stabilizing controller @var{K}, determine a reduced
## order controller @var{Kr} such that the closed-loop system is stable and closed-loop
## performance is retained.
##
## The algorithm tries to minimize the frequency-weighted error
## @iftex
## @tex
## $$ || V \\ (K - K_r) \\ W ||_{\\infty} = \\min $$
## @end tex
## @end iftex
## @ifnottex
## @example
## ||V (K-Kr) W||    = min
##               inf
## @end example
## @end ifnottex
## where @var{V} and @var{W} denote output and input weightings.
##
##
## @strong{Inputs}
## @table @var
## @item G
## @acronym{LTI} model of the plant.
## It has m inputs, p outputs and n states.
## @item K
## @acronym{LTI} model of the controller.
## It has p inputs, m outputs and nc states.
## @item ncr
## The desired order of the resulting reduced order controller @var{Kr}.
## If not specified, @var{ncr} is chosen automatically according
## to the description of key @var{'order'}.
## @item @dots{}
## Optional pairs of keys and values.  @code{"key1", value1, "key2", value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}.  @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Kr
## State-space model of reduced order controller.
## @item info
## Struct containing additional information.
## @table @var
## @item info.ncr
## The order of the obtained reduced order controller @var{Kr}.
## @item info.ncs
## The order of the alpha-stable part of original controller @var{K}.
## @item info.hsvc
## The Hankel singular values of the alpha-stable part of @var{K}.
## The @var{ncs} Hankel singular values are ordered decreasingly.
## @end table
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'order', 'ncr'
## The desired order of the resulting reduced order controller @var{Kr}.
## If not specified, @var{ncr} is chosen automatically such that states with
## Hankel singular values @var{info.hsvc} > @var{tol1} are retained.
##
## @item 'method'
## Order reduction approach to be used as follows:
## @table @var
## @item 'sr', 's'
## Use the square-root Singular Perturbation Approximation method.
## @item 'bfsr', 'p'
## Use the balancing-free square-root Singular Perturbation Approximation method.  Default method.
## @end table
##
## @item 'weight'
## Specifies the type of frequency-weighting as follows:
## @table @var
## @item 'none'
## No weightings are used (V = I, W = I).
##
## @item 'left', 'output'
## Use stability enforcing left (output) weighting
## @iftex
## @tex
## $$ V = (I - G K)^{-1} G,  \\qquad W = I $$
## @end tex
## @end iftex
## @ifnottex
## @example
##           -1
## V = (I-G*K) *G ,  W = I
## @end example         
## @end ifnottex
##
## @item 'right', 'input'
## Use stability enforcing right (input) weighting
## @iftex
## @tex
## $$ V = I,  \\qquad W = (I - G K)^{-1} G  $$
## @end tex
## @end iftex
## @ifnottex
## @example
##                    -1
## V = I ,  W = (I-G*K) *G
## @end example                    
## @end ifnottex
##
## @item 'both', 'performance'
## Use stability and performance enforcing weightings
## @iftex
## @tex
## $$ V = (I - G K)^{-1} G,  \\qquad W = (I - G K)^{-1}  $$
## @end tex
## @end iftex
## @ifnottex
## @example
##           -1                -1
## V = (I-G*K) *G ,  W = (I-G*K)
## @end example
## @end ifnottex
## Default value.
## @end table
##
## @item 'feedback'
## Specifies whether @var{K} is a positive or negative feedback controller:
## @table @var
## @item '+'
## Use positive feedback controller.  Default value.
## @item '-'
## Use negative feedback controller.
## @end table
##
## @item 'alpha'
## Specifies the ALPHA-stability boundary for the eigenvalues
## of the state dynamics matrix @var{K.A}.  For a continuous-time
## controller, ALPHA <= 0 is the boundary value for
## the real parts of eigenvalues, while for a discrete-time
## controller, 0 <= ALPHA <= 1 represents the
## boundary value for the moduli of eigenvalues.
## The ALPHA-stability domain does not include the boundary.
## Default value is 0 for continuous-time controllers and
## 1 for discrete-time controllers.
##
## @item 'tol1'
## If @var{'order'} is not specified, @var{tol1} contains the tolerance for
## determining the order of the reduced controller.
## For model reduction, the recommended value of @var{tol1} is
## c*info.hsvc(1), where c lies in the interval [0.00001, 0.001].
## Default value is info.ncs*eps*info.hsvc(1).
## If @var{'order'} is specified, the value of @var{tol1} is ignored.
##
## @item 'tol2'
## The tolerance for determining the order of a minimal
## realization of the ALPHA-stable part of the given
## controller.  TOL2 <= TOL1.
## If not specified, ncs*eps*info.hsvc(1) is chosen.
##
## @item 'gram-ctrb'
## Specifies the choice of frequency-weighted controllability
## Grammian as follows:
## @table @var
## @item 'standard'
## Choice corresponding to standard Enns' method [1].  Default method.
## @item 'enhanced'
## Choice corresponding to the stability enhanced
## modified Enns' method of [2].
## @end table
##
## @item 'gram-obsv'
## Specifies the choice of frequency-weighted observability
## Grammian as follows:
## @table @var
## @item 'standard'
## Choice corresponding to standard Enns' method [1].  Default method.
## @item 'enhanced'
## Choice corresponding to the stability enhanced
## modified Enns' method of [2].
## @end table
##
## @item 'equil', 'scale'
## Boolean indicating whether equilibration (scaling) should be
## performed on @var{G} and @var{K} prior to order reduction.
## Default value is false if both @code{G.scaled == true, K.scaled == true}
## and true otherwise.
## Note that for @acronym{MIMO} models, proper scaling of both inputs and outputs
## is of utmost importance.  The input and output scaling can @strong{not}
## be done by the equilibration option or the @command{prescale} function
## because these functions perform state transformations only.
## Furthermore, signals should not be scaled simply to a certain range.
## For all inputs (or outputs), a certain change should be of the same
## importance for the model.
## @end table
##
## @strong{Algorithm}@*
## Uses SLICOT SB16AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn

## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: December 2011
## Version: 0.1

function [Kr, info] = spaconred (varargin)

  [Kr, info] = __conred_sb16ad__ ("spa", varargin{:});

endfunction

## TODO: add a test