/usr/share/octave/packages/control-3.0.0/lyap.m is in octave-control 3.0.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {@var{x} =} lyap (@var{a}, @var{b})
## @deftypefnx{Function File} {@var{x} =} lyap (@var{a}, @var{b}, @var{c})
## @deftypefnx{Function File} {@var{x} =} lyap (@var{a}, @var{b}, @var{[]}, @var{e})
## Solve continuous-time Lyapunov or Sylvester equations.
##
## @strong{Equations}
## @example
## @group
## AX + XA' + B = 0 (Lyapunov Equation)
##
## AX + XB + C = 0 (Sylvester Equation)
##
## AXE' + EXA' + B = 0 (Generalized Lyapunov Equation)
## @end group
## @end example
##
## @strong{Algorithm}@*
## Uses SLICOT SB03MD, SB04MD and SG03AD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
##
## @seealso{lyapchol, dlyap, dlyapchol}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: January 2010
## Version: 0.2.1
function [x, scale] = lyap (a, b, c, e)
scale = 1;
switch (nargin)
case 2 # Lyapunov equation
if (! is_real_square_matrix (a, b))
## error ("lyap: a, b must be real and square");
error ("lyap: %s, %s must be real and square", ...
inputname (1), inputname (2));
endif
if (rows (a) != rows (b))
## error ("lyap: a, b must have the same number of rows");
error ("lyap: %s, %s must have the same number of rows", ...
inputname (1), inputname (2));
endif
[x, scale] = __sl_sb03md__ (a, -b, false); # AX + XA' = -B
## x /= scale; # 0 < scale <= 1
case 3 # Sylvester equation
if (! is_real_square_matrix (a, b))
## error ("lyap: a, b must be real and square");
error ("lyap: %s, %s must be real and square", ...
inputname (1), inputname (2));
endif
if (! is_real_matrix (c) || rows (c) != rows (a) || columns (c) != columns (b))
## error ("lyap: c must be a real (%dx%d) matrix", rows (a), columns (b));
error ("lyap: %s must be a real (%dx%d) matrix", ...
rows (a), columns (b), inputname (3));
endif
x = __sl_sb04md__ (a, b, -c); # AX + XB = -C
case 4 # generalized Lyapunov equation
if (! isempty (c))
print_usage ();
endif
if (! is_real_square_matrix (a, b, e))
## error ("lyap: a, b, e must be real and square");
error ("lyap: %s, %s, %s must be real and square", ...
inputname (1), inputname (2), inputname (4));
endif
if (rows (b) != rows (a) || rows (e) != rows (a))
## error ("lyap: a, b, e must have the same number of rows");
error ("lyap: %s, %s, %s must have the same number of rows", ...
inputname (1), inputname (2), inputname (4));
endif
if (! issymmetric (b))
## error ("lyap: b must be symmetric");
error ("lyap: %s must be symmetric", ...
inputname (2));
endif
[x, scale] = __sl_sg03ad__ (a, e, -b, false); # AXE' + EXA' = -B
## x /= scale; # 0 < scale <= 1
otherwise
print_usage ();
endswitch
if (scale < 1)
warning ("lyap: solution scaled by %g to prevent overflow", scale);
endif
endfunction
## Lyapunov
%!shared X, X_exp
%! A = [1, 2; -3, -4];
%! Q = [3, 1; 1, 1];
%! X = lyap (A, Q);
%! X_exp = [ 6.1667, -3.8333;
%! -3.8333, 3.0000];
%!assert (X, X_exp, 1e-4);
## Sylvester
%!shared X, X_exp
%! A = [2.0 1.0 3.0
%! 0.0 2.0 1.0
%! 6.0 1.0 2.0];
%!
%! B = [2.0 1.0
%! 1.0 6.0];
%!
%! C = [2.0 1.0
%! 1.0 4.0
%! 0.0 5.0];
%!
%! X = lyap (A, B, -C);
%!
%! X_exp = [-2.7685 0.5498
%! -1.0531 0.6865
%! 4.5257 -0.4389];
%!
%!assert (X, X_exp, 1e-4);
## Generalized Lyapunov
%!shared X, X_exp
%! A = [ 3.0 1.0 1.0
%! 1.0 3.0 0.0
%! 1.0 0.0 2.0];
%!
%! E = [ 1.0 3.0 0.0
%! 3.0 2.0 1.0
%! 1.0 0.0 1.0];
%!
%! B = [-64.0 -73.0 -28.0
%! -73.0 -70.0 -25.0
%! -28.0 -25.0 -18.0];
%!
%! X = lyap (A.', -B, [], E.');
%!
%! X_exp = [-2.0000 -1.0000 0.0000
%! -1.0000 -3.0000 -1.0000
%! 0.0000 -1.0000 -3.0000];
%!
%!assert (X, X_exp, 1e-4);
|