/usr/share/octave/packages/control-3.0.0/hnamodred.m is in octave-control 3.0.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{Gr}, @var{info}] =} hnamodred (@var{G}, @dots{})
## @deftypefnx{Function File} {[@var{Gr}, @var{info}] =} hnamodred (@var{G}, @var{nr}, @dots{})
## @deftypefnx{Function File} {[@var{Gr}, @var{info}] =} hnamodred (@var{G}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{Gr}, @var{info}] =} hnamodred (@var{G}, @var{nr}, @var{opt}, @dots{})
##
## Model order reduction by frequency weighted optimal Hankel-norm (HNA) method.
## The aim of model reduction is to find an @acronym{LTI} system @var{Gr} of order
## @var{nr} (nr < n) such that the input-output behaviour of @var{Gr}
## approximates the one from original system @var{G}.
##
## HNA is an absolute error method which tries to minimize
## @iftex
## @tex
## $$ || G - G_r ||_H = \\min $$
## $$ || V \\ (G - G_r) \\ W ||_H = \\min $$
## @end tex
## @end iftex
## @ifnottex
## @example
## ||G-Gr|| = min
## H
##
## ||V (G-Gr) W|| = min
## H
## @end example
## @end ifnottex
## where @var{V} and @var{W} denote output and input weightings.
##
##
## @strong{Inputs}
## @table @var
## @item G
## @acronym{LTI} model to be reduced.
## @item nr
## The desired order of the resulting reduced order system @var{Gr}.
## If not specified, @var{nr} is chosen automatically according
## to the description of key @var{"order"}.
## @item @dots{}
## Optional pairs of keys and values. @code{"key1", value1, "key2", value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}. @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Gr
## Reduced order state-space model.
## @item info
## Struct containing additional information.
## @table @var
## @item info.n
## The order of the original system @var{G}.
## @item info.ns
## The order of the @var{alpha}-stable subsystem of the original system @var{G}.
## @item info.hsv
## The Hankel singular values corresponding to the projection @code{op(V)*G1*op(W)},
## where G1 denotes the @var{alpha}-stable part of the original system @var{G}.
## The @var{ns} Hankel singular values are ordered decreasingly.
## @item info.nu
## The order of the @var{alpha}-unstable subsystem of both the original
## system @var{G} and the reduced-order system @var{Gr}.
## @item info.nr
## The order of the obtained reduced order system @var{Gr}.
## @end table
## @end table
##
##
## @strong{Option Keys and Values}
## @table @var
## @item 'order', 'nr'
## The desired order of the resulting reduced order system @var{Gr}.
## If not specified, @var{nr} is the sum of @var{info.nu} and the number of
## Hankel singular values greater than @code{max(tol1, ns*eps*info.hsv(1)};
##
## @item 'method'
## Specifies the computational approach to be used.
## Valid values corresponding to this key are:
## @table @var
## @item 'descriptor'
## Use the inverse free descriptor system approach.
## @item 'standard'
## Use the inversion based standard approach.
## @item 'auto'
## Switch automatically to the inverse free
## descriptor approach in case of badly conditioned
## feedthrough matrices in V or W. Default method.
## @end table
##
##
## @item 'left', 'v'
## @acronym{LTI} model of the left/output frequency weighting.
## The weighting must be antistable.
## @iftex
## @math{|| V \\ (G-G_r) \\dots ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || V (G-Gr) . || = min
## H
## @end example
## @end ifnottex
##
## @item 'right', 'w'
## @acronym{LTI} model of the right/input frequency weighting.
## The weighting must be antistable.
## @iftex
## @math{|| \\dots (G-G_r) \\ W ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || . (G-Gr) W || = min
## H
## @end example
## @end ifnottex
##
##
## @item 'left-inv', 'inv-v'
## @acronym{LTI} model of the left/output frequency weighting.
## The weighting must have only antistable zeros.
## @iftex
## @math{|| inv(V) \\ (G-G_r) \\dots ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || inv(V) (G-Gr) . || = min
## H
## @end example
## @end ifnottex
##
## @item 'right-inv', 'inv-w'
## @acronym{LTI} model of the right/input frequency weighting.
## The weighting must have only antistable zeros.
## @iftex
## @math{|| \\dots (G-G_r) \\ inv(W) ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || . (G-Gr) inv(W) || = min
## H
## @end example
## @end ifnottex
##
##
## @item 'left-conj', 'conj-v'
## @acronym{LTI} model of the left/output frequency weighting.
## The weighting must be stable.
## @iftex
## @math{|| conj(V) \\ (G-G_r) \\dots ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || V (G-Gr) . || = min
## H
## @end example
## @end ifnottex
##
## @item 'right-conj', 'conj-w'
## @acronym{LTI} model of the right/input frequency weighting.
## The weighting must be stable.
## @iftex
## @math{|| \\dots (G-G_r) \\ conj(W) ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || . (G-Gr) W || = min
## H
## @end example
## @end ifnottex
##
##
## @item 'left-conj-inv', 'conj-inv-v'
## @acronym{LTI} model of the left/output frequency weighting.
## The weighting must be minimum-phase.
## @iftex
## @math{|| conj(inv(V)) \\ (G-G_r) \\dots ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || V (G-Gr) . || = min
## H
## @end example
## @end ifnottex
##
## @item 'right-conj-inv', 'conj-inv-w'
## @acronym{LTI} model of the right/input frequency weighting.
## The weighting must be minimum-phase.
## @iftex
## @math{|| \\dots (G-G_r) \\ conj(inv(W)) ||_H = \\min}
## @end iftex
## @ifnottex
## @example
## || . (G-Gr) W || = min
## H
## @end example
## @end ifnottex
##
##
## @item 'alpha'
## Specifies the ALPHA-stability boundary for the eigenvalues
## of the state dynamics matrix @var{G.A}. For a continuous-time
## system, ALPHA <= 0 is the boundary value for
## the real parts of eigenvalues, while for a discrete-time
## system, 0 <= ALPHA <= 1 represents the
## boundary value for the moduli of eigenvalues.
## The ALPHA-stability domain does not include the boundary.
## Default value is 0 for continuous-time systems and
## 1 for discrete-time systems.
##
## @item 'tol1'
## If @var{'order'} is not specified, @var{tol1} contains the tolerance for
## determining the order of the reduced model.
## For model reduction, the recommended value of @var{tol1} is
## c*info.hsv(1), where c lies in the interval [0.00001, 0.001].
## @var{tol1} < 1.
## If @var{'order'} is specified, the value of @var{tol1} is ignored.
##
## @item 'tol2'
## The tolerance for determining the order of a minimal
## realization of the ALPHA-stable part of the given
## model. @var{tol2} <= @var{tol1} < 1.
## If not specified, ns*eps*info.hsv(1) is chosen.
##
## @item 'equil', 'scale'
## Boolean indicating whether equilibration (scaling) should be
## performed on system @var{G} prior to order reduction.
## Default value is true if @code{G.scaled == false} and
## false if @code{G.scaled == true}.
## Note that for @acronym{MIMO} models, proper scaling of both inputs and outputs
## is of utmost importance. The input and output scaling can @strong{not}
## be done by the equilibration option or the @command{prescale} function
## because these functions perform state transformations only.
## Furthermore, signals should not be scaled simply to a certain range.
## For all inputs (or outputs), a certain change should be of the same
## importance for the model.
## @end table
##
##
## Approximation Properties:
## @itemize @bullet
## @item
## Guaranteed stability of reduced models
## @item
## Lower guaranteed error bound
## @item
## Guaranteed a priori error bound
## @iftex
## @tex
## $$ \\sigma_{r+1} \\leq || (G-G_r) ||_{\\infty} \\leq 2 \\sum_{j=r+1}^{n} \\sigma_j $$
## @end tex
## @end iftex
## @end itemize
##
## @strong{Algorithm}@*
## Uses SLICOT AB09JD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2011
## Version: 0.1
function [Gr, info] = hnamodred (G, varargin)
if (nargin == 0)
print_usage ();
endif
if (! isa (G, "lti"))
error ("hnamodred: first argument must be an LTI system");
endif
if (nargin > 1) # hnamodred (G, ...)
if (is_real_scalar (varargin{1})) # hnamodred (G, nr)
varargin = horzcat (varargin(2:end), {"order"}, varargin(1));
endif
if (isstruct (varargin{1})) # hnamodred (G, opt, ...), hnamodred (G, nr, opt, ...)
varargin = horzcat (__opt2cell__ (varargin{1}), varargin(2:end));
endif
## order placed at the end such that nr from hnamodred (G, nr, ...)
## and hnamodred (G, nr, opt, ...) overrides possible nr's from
## key/value-pairs and inside opt struct (later keys override former keys,
## nr > key/value > opt)
endif
nkv = numel (varargin); # number of keys and values
if (rem (nkv, 2))
error ("hnamodred: keys and values must come in pairs");
endif
[a, b, c, d, tsam, scaled] = ssdata (G);
[p, m] = size (G);
dt = isdt (G);
## default arguments
alpha = __modred_default_alpha__ (dt);
av = bv = cv = dv = [];
jobv = 0;
aw = bw = cw = dw = [];
jobw = 0;
jobinv = 2;
tol1 = 0;
tol2 = 0;
ordsel = 1;
nr = 0;
## handle keys and values
for k = 1 : 2 : nkv
key = lower (varargin{k});
val = varargin{k+1};
switch (key)
case {"left", "v", "wo"}
[av, bv, cv, dv, jobv] = __modred_check_weight__ (val, dt, p, p);
## TODO: correct error messages for non-square weights
case {"right", "w", "wi"}
[aw, bw, cw, dw, jobw] = __modred_check_weight__ (val, dt, m, m);
case {"left-inv", "inv-v"}
[av, bv, cv, dv] = __modred_check_weight__ (val, dt, p, p);
jobv = 2;
case {"right-inv", "inv-w"}
[aw, bw, cw, dw] = __modred_check_weight__ (val, dt, m, m);
jobv = 2
case {"left-conj", "conj-v"}
[av, bv, cv, dv] = __modred_check_weight__ (val, dt, p, p);
jobv = 3;
case {"right-conj", "conj-w"}
[aw, bw, cw, dw] = __modred_check_weight__ (val, dt, m, m);
jobv = 3
case {"left-conj-inv", "conj-inv-v"}
[av, bv, cv, dv] = __modred_check_weight__ (val, dt, p, p);
jobv = 4;
case {"right-conj-inv", "conj-inv-w"}
[aw, bw, cw, dw] = __modred_check_weight__ (val, dt, m, m);
jobv = 4
case {"order", "nr"}
[nr, ordsel] = __modred_check_order__ (val, rows (a));
case "tol1"
tol1 = __modred_check_tol__ (val, "tol1");
case "tol2"
tol2 = __modred_check_tol__ (val, "tol2");
case "alpha"
alpha = __modred_check_alpha__ (val, dt);
case "method"
switch (tolower (val(1)))
case {"d", "n"} # "descriptor"
jobinv = 0;
case {"s", "i"} # "standard"
jobinv = 1;
case "a" # {"auto", "automatic"}
jobinv = 2;
otherwise
error ("hnamodred: invalid computational approach");
endswitch
case {"equil", "equilibrate", "equilibration", "scale", "scaling"}
scaled = __modred_check_equil__ (val);
otherwise
warning ("hnamodred: invalid property name '%s' ignored", key);
endswitch
endfor
## perform model order reduction
[ar, br, cr, dr, nr, hsv, ns] = __sl_ab09jd__ (a, b, c, d, dt, scaled, nr, ordsel, alpha, ...
jobv, av, bv, cv, dv, ...
jobw, aw, bw, cw, dw, ...
jobinv, tol1, tol2);
## assemble reduced order model
Gr = ss (ar, br, cr, dr, tsam);
## assemble info struct
n = rows (a);
nu = n - ns;
info = struct ("n", n, "ns", ns, "hsv", hsv, "nu", nu, "nr", nr);
endfunction
%!shared Mo, Me, Info, HSVe
%! A = [ -3.8637 -7.4641 -9.1416 -7.4641 -3.8637 -1.0000
%! 1.0000, 0 0 0 0 0
%! 0 1.0000 0 0 0 0
%! 0 0 1.0000 0 0 0
%! 0 0 0 1.0000 0 0
%! 0 0 0 0 1.0000 0 ];
%!
%! B = [ 1
%! 0
%! 0
%! 0
%! 0
%! 0 ];
%!
%! C = [ 0 0 0 0 0 1 ];
%!
%! D = [ 0 ];
%!
%! G = ss (A, B, C, D); # "scaled", false
%!
%! AV = [ 0.2000 -1.0000
%! 1.0000 0 ];
%!
%! BV = [ 1
%! 0 ];
%!
%! CV = [ -1.8000 0 ];
%!
%! DV = [ 1 ];
%!
%! V = ss (AV, BV, CV, DV);
%!
%! [Gr, Info] = hnamodred (G, "left", V, "tol1", 1e-1, "tol2", 1e-14);
%! [Ao, Bo, Co, Do] = ssdata (Gr);
%!
%! Ae = [ -0.2391 0.3072 1.1630 1.1967
%! -2.9709 -0.2391 2.6270 3.1027
%! 0.0000 0.0000 -0.5137 -1.2842
%! 0.0000 0.0000 0.1519 -0.5137 ];
%!
%! Be = [ -1.0497
%! -3.7052
%! 0.8223
%! 0.7435 ];
%!
%! Ce = [ -0.4466 0.0143 -0.4780 -0.2013 ];
%!
%! De = [ 0.0219 ];
%!
%! HSVe = [ 2.6790 2.1589 0.8424 0.1929 0.0219 0.0011 ].';
%!
%! Mo = [Ao, Bo; Co, Do];
%! Me = [Ae, Be; Ce, De];
%!
%!assert (Mo, Me, 1e-4);
#%!assert (Info.hsv, HSVe, 1e-4);
|