/usr/share/octave/packages/control-3.0.0/bstmodred.m is in octave-control 3.0.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | ## Copyright (C) 2009-2015 Lukas F. Reichlin
##
## This file is part of LTI Syncope.
##
## LTI Syncope is free software: you can redistribute it and/or modify
## it under the terms of the GNU General Public License as published by
## the Free Software Foundation, either version 3 of the License, or
## (at your option) any later version.
##
## LTI Syncope is distributed in the hope that it will be useful,
## but WITHOUT ANY WARRANTY; without even the implied warranty of
## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
## GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License
## along with LTI Syncope. If not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn{Function File} {[@var{Gr}, @var{info}] =} bstmodred (@var{G}, @dots{})
## @deftypefnx{Function File} {[@var{Gr}, @var{info}] =} bstmodred (@var{G}, @var{nr}, @dots{})
## @deftypefnx{Function File} {[@var{Gr}, @var{info}] =} bstmodred (@var{G}, @var{opt}, @dots{})
## @deftypefnx{Function File} {[@var{Gr}, @var{info}] =} bstmodred (@var{G}, @var{nr}, @var{opt}, @dots{})
##
## Model order reduction by Balanced Stochastic Truncation (BST) method.
## The aim of model reduction is to find an @acronym{LTI} system @var{Gr} of order
## @var{nr} (nr < n) such that the input-output behaviour of @var{Gr}
## approximates the one from original system @var{G}.
##
## BST is a relative error method which tries to minimize
## @iftex
## @tex
## $$ || G^{-1} (G-G_r) ||_{\\infty} = \\min $$
## @end tex
## @end iftex
## @ifnottex
## @example
## -1
## ||G (G-Gr)|| = min
## inf
## @end example
## @end ifnottex
##
##
##
## @strong{Inputs}
## @table @var
## @item G
## @acronym{LTI} model to be reduced.
## @item nr
## The desired order of the resulting reduced order system @var{Gr}.
## If not specified, @var{nr} is chosen automatically according
## to the description of key @var{'order'}.
## @item @dots{}
## Optional pairs of keys and values. @code{"key1", value1, "key2", value2}.
## @item opt
## Optional struct with keys as field names.
## Struct @var{opt} can be created directly or
## by function @command{options}. @code{opt.key1 = value1, opt.key2 = value2}.
## @end table
##
## @strong{Outputs}
## @table @var
## @item Gr
## Reduced order state-space model.
## @item info
## Struct containing additional information.
## @table @var
## @item info.n
## The order of the original system @var{G}.
## @item info.ns
## The order of the @var{alpha}-stable subsystem of the original system @var{G}.
## @item info.hsv
## The Hankel singular values of the phase system corresponding
## to the @var{alpha}-stable part of the original system @var{G}.
## The @var{ns} Hankel singular values are ordered decreasingly.
## @item info.nu
## The order of the @var{alpha}-unstable subsystem of both the original
## system @var{G} and the reduced-order system @var{Gr}.
## @item info.nr
## The order of the obtained reduced order system @var{Gr}.
## @end table
## @end table
##
## @strong{Option Keys and Values}
## @table @var
## @item 'order', 'nr'
## The desired order of the resulting reduced order system @var{Gr}.
## If not specified, @var{nr} is the sum of NU and the number of
## Hankel singular values greater than @code{MAX(TOL1,NS*EPS)};
## @var{nr} can be further reduced to ensure that
## @code{HSV(NR-NU) > HSV(NR+1-NU)}.
##
## @item 'method'
## Approximation method for the H-infinity norm.
## Valid values corresponding to this key are:
## @table @var
## @item 'sr-bta', 'b'
## Use the square-root Balance & Truncate method.
## @item 'bfsr-bta', 'f'
## Use the balancing-free square-root Balance & Truncate method. Default method.
## @item 'sr-spa', 's'
## Use the square-root Singular Perturbation Approximation method.
## @item 'bfsr-spa', 'p'
## Use the balancing-free square-root Singular Perturbation Approximation method.
## @end table
##
## @item 'alpha'
## Specifies the ALPHA-stability boundary for the eigenvalues
## of the state dynamics matrix @var{G.A}. For a continuous-time
## system, ALPHA <= 0 is the boundary value for
## the real parts of eigenvalues, while for a discrete-time
## system, 0 <= ALPHA <= 1 represents the
## boundary value for the moduli of eigenvalues.
## The ALPHA-stability domain does not include the boundary.
## Default value is 0 for continuous-time systems and
## 1 for discrete-time systems.
##
## @item 'beta'
## Use @code{[G, beta*I]} as new system @var{G} to combine
## absolute and relative error methods.
## BETA > 0 specifies the absolute/relative error weighting
## parameter. A large positive value of BETA favours the
## minimization of the absolute approximation error, while a
## small value of BETA is appropriate for the minimization
## of the relative error.
## BETA = 0 means a pure relative error method and can be
## used only if rank(G.D) = rows(G.D) which means that
## the feedthrough matrice must not be rank-deficient.
## Default value is 0.
##
## @item 'tol1'
## If @var{'order'} is not specified, @var{tol1} contains the tolerance for
## determining the order of reduced system.
## For model reduction, the recommended value of @var{tol1} lies
## in the interval [0.00001, 0.001]. @var{tol1} < 1.
## If @var{tol1} <= 0 on entry, the used default value is
## @var{tol1} = NS*EPS, where NS is the number of
## ALPHA-stable eigenvalues of A and EPS is the machine
## precision.
## If @var{'order'} is specified, the value of @var{tol1} is ignored.
##
## @item 'tol2'
## The tolerance for determining the order of a minimal
## realization of the phase system (see METHOD) corresponding
## to the ALPHA-stable part of the given system.
## The recommended value is TOL2 = NS*EPS. TOL2 <= TOL1 < 1.
## This value is used by default if @var{'tol2'} is not specified
## or if TOL2 <= 0 on entry.
##
## @item 'equil', 'scale'
## Boolean indicating whether equilibration (scaling) should be
## performed on system @var{G} prior to order reduction.
## Default value is true if @code{G.scaled == false} and
## false if @code{G.scaled == true}.
## Note that for @acronym{MIMO} models, proper scaling of both inputs and outputs
## is of utmost importance. The input and output scaling can @strong{not}
## be done by the equilibration option or the @command{prescale} function
## because these functions perform state transformations only.
## Furthermore, signals should not be scaled simply to a certain range.
## For all inputs (or outputs), a certain change should be of the same
## importance for the model.
## @end table
##
##
## BST is often suitable to perform model reduction in order to obtain
## low order design models for controller synthesis.
##
## Approximation Properties:
## @itemize @bullet
## @item
## Guaranteed stability of reduced models
## @item
## Approximates simultaneously gain and phase
## @item
## Preserves non-minimum phase zeros
## @item
## Guaranteed a priori error bound
## @iftex
## @tex
## $$ || G^{-1} (G-G_r) ||_{\\infty} \\leq 2 \\sum_{j=r+1}^{n} {1+\\sigma_j \\over 1-\\sigma_j} - 1 $$
## @end tex
## @end iftex
## @end itemize
##
## @strong{Algorithm}@*
## Uses SLICOT AB09HD by courtesy of
## @uref{http://www.slicot.org, NICONET e.V.}
## @end deftypefn
## Author: Lukas Reichlin <lukas.reichlin@gmail.com>
## Created: October 2011
## Version: 0.1
function [Gr, info] = bstmodred (G, varargin)
if (nargin == 0)
print_usage ();
endif
if (! isa (G, "lti"))
error ("bstmodred: first argument must be an LTI system");
endif
if (nargin > 1) # bstmodred (G, ...)
if (is_real_scalar (varargin{1})) # bstmodred (G, nr)
varargin = horzcat (varargin(2:end), {"order"}, varargin(1));
endif
if (isstruct (varargin{1})) # bstmodred (G, opt, ...), bstmodred (G, nr, opt, ...)
varargin = horzcat (__opt2cell__ (varargin{1}), varargin(2:end));
endif
## order placed at the end such that nr from bstmodred (G, nr, ...)
## and bstmodred (G, nr, opt, ...) overrides possible nr's from
## key/value-pairs and inside opt struct (later keys override former keys,
## nr > key/value > opt)
endif
nkv = numel (varargin); # number of keys and values
if (rem (nkv, 2))
error ("bstmodred: keys and values must come in pairs");
endif
[a, b, c, d, tsam, scaled] = ssdata (G);
dt = isdt (G);
## default arguments
alpha = __modred_default_alpha__ (dt);
beta = 0;
tol1 = 0;
tol2 = 0;
ordsel = 1;
nr = 0;
job = 1;
## handle keys and values
for k = 1 : 2 : nkv
key = lower (varargin{k});
val = varargin{k+1};
switch (key)
case {"order", "nr"}
[nr, ordsel] = __modred_check_order__ (val, rows (a));
case "tol1"
tol1 = __modred_check_tol__ (val, "tol1");
case "tol2"
tol2 = __modred_check_tol__ (val, "tol2");
case "alpha"
alpha = __modred_check_alpha__ (val, dt);
case "beta"
if (! issample (val, 0))
error ("bstmodred: argument %s must be BETA >= 0", varargin{k});
endif
beta = val;
case "method" # approximation method
switch (tolower (val))
case {"sr-bta", "b"} # 'B': use the square-root Balance & Truncate method
job = 0;
case {"bfsr-bta", "f"} # 'F': use the balancing-free square-root Balance & Truncate method
job = 1;
case {"sr-spa", "s"} # 'S': use the square-root Singular Perturbation Approximation method
job = 2;
case {"bfsr-spa", "p"} # 'P': use the balancing-free square-root Singular Perturbation Approximation method
job = 3;
otherwise
error ("bstmodred: '%s' is an invalid approximation method", val);
endswitch
case {"equil", "equilibrate", "equilibration", "scale", "scaling"}
scaled = __modred_check_equil__ (val);
otherwise
warning ("bstmodred: invalid property name '%s' ignored", key);
endswitch
endfor
## perform model order reduction
[ar, br, cr, dr, nr, hsv, ns] = __sl_ab09hd__ (a, b, c, d, dt, scaled, job, nr, ordsel, alpha, beta, ...
tol1, tol2);
## assemble reduced order model
Gr = ss (ar, br, cr, dr, tsam);
## assemble info struct
n = rows (a);
nu = n - ns;
info = struct ("n", n, "ns", ns, "hsv", hsv, "nu", nu, "nr", nr);
endfunction
%!shared Mo, Me, Info, HSVe
%! A = [ -0.04165 0.0000 4.9200 -4.9200 0.0000 0.0000 0.0000
%! -5.2100 -12.500 0.0000 0.0000 0.0000 0.0000 0.0000
%! 0.0000 3.3300 -3.3300 0.0000 0.0000 0.0000 0.0000
%! 0.5450 0.0000 0.0000 0.0000 -0.5450 0.0000 0.0000
%! 0.0000 0.0000 0.0000 4.9200 -0.04165 0.0000 4.9200
%! 0.0000 0.0000 0.0000 0.0000 -5.2100 -12.500 0.0000
%! 0.0000 0.0000 0.0000 0.0000 0.0000 3.3300 -3.3300 ];
%!
%! B = [ 0.0000 0.0000
%! 12.500 0.0000
%! 0.0000 0.0000
%! 0.0000 0.0000
%! 0.0000 0.0000
%! 0.0000 12.500
%! 0.0000 0.0000 ];
%!
%! C = [ 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
%! 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
%! 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 ];
%!
%! D = [ 0.0000 0.0000
%! 0.0000 0.0000
%! 0.0000 0.0000 ];
%!
%! G = ss (A, B, C, D, "scaled", true);
%!
%! [Gr, Info] = bstmodred (G, "beta", 1.0, "tol1", 0.1, "tol2", 0.0);
%! [Ao, Bo, Co, Do] = ssdata (Gr);
%!
%! Ae = [ 1.2729 0.0000 6.5947 0.0000 -3.4229
%! 0.0000 0.8169 0.0000 2.4821 0.0000
%! -2.9889 0.0000 -2.9028 0.0000 -0.3692
%! 0.0000 -3.3921 0.0000 -3.1126 0.0000
%! -1.4767 0.0000 -2.0339 0.0000 -0.6107 ];
%!
%! Be = [ 0.1331 -0.1331
%! -0.0862 -0.0862
%! -2.6777 2.6777
%! -3.5767 -3.5767
%! -2.3033 2.3033 ];
%!
%! Ce = [ -0.6907 -0.6882 0.0779 0.0958 -0.0038
%! 0.0676 0.0000 0.6532 0.0000 -0.7522
%! 0.6907 -0.6882 -0.0779 0.0958 0.0038 ];
%!
%! De = [ 0.0000 0.0000
%! 0.0000 0.0000
%! 0.0000 0.0000 ];
%!
%! HSVe = [ 0.8803 0.8506 0.8038 0.4494 0.3973 0.0214 0.0209 ].';
%!
%! Mo = [Ao, Bo; Co, Do];
%! Me = [Ae, Be; Ce, De];
%!
#%!assert (Mo, Me, 1e-4);
%!assert (Info.hsv, HSVe, 1e-4);
|