/usr/lib/ocaml/map.mli is in ocaml-nox 4.05.0-10ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 | (**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(** Association tables over ordered types.
This module implements applicative association tables, also known as
finite maps or dictionaries, given a total ordering function
over the keys.
All operations over maps are purely applicative (no side-effects).
The implementation uses balanced binary trees, and therefore searching
and insertion take time logarithmic in the size of the map.
For instance:
{[
module IntPairs =
struct
type t = int * int
let compare (x0,y0) (x1,y1) =
match Pervasives.compare x0 x1 with
0 -> Pervasives.compare y0 y1
| c -> c
end
module PairsMap = Map.Make(IntPairs)
let m = PairsMap.(empty |> add (0,1) "hello" |> add (1,0) "world")
]}
This creates a new module [PairsMap], with a new type ['a PairsMap.t]
of maps from [int * int] to ['a]. In this example, [m] contains [string]
values so its type is [string PairsMap.t].
*)
module type OrderedType =
sig
type t
(** The type of the map keys. *)
val compare : t -> t -> int
(** A total ordering function over the keys.
This is a two-argument function [f] such that
[f e1 e2] is zero if the keys [e1] and [e2] are equal,
[f e1 e2] is strictly negative if [e1] is smaller than [e2],
and [f e1 e2] is strictly positive if [e1] is greater than [e2].
Example: a suitable ordering function is the generic structural
comparison function {!Pervasives.compare}. *)
end
(** Input signature of the functor {!Map.Make}. *)
module type S =
sig
type key
(** The type of the map keys. *)
type (+'a) t
(** The type of maps from type [key] to type ['a]. *)
val empty: 'a t
(** The empty map. *)
val is_empty: 'a t -> bool
(** Test whether a map is empty or not. *)
val mem: key -> 'a t -> bool
(** [mem x m] returns [true] if [m] contains a binding for [x],
and [false] otherwise. *)
val add: key -> 'a -> 'a t -> 'a t
(** [add x y m] returns a map containing the same bindings as
[m], plus a binding of [x] to [y]. If [x] was already bound
in [m] to a value that is physically equal to [y],
[m] is returned unchanged (the result of the function is
then physically equal to [m]). Otherwise, the previous binding
of [x] in [m] disappears.
@before 4.03 Physical equality was not ensured. *)
val singleton: key -> 'a -> 'a t
(** [singleton x y] returns the one-element map that contains a binding [y]
for [x].
@since 3.12.0
*)
val remove: key -> 'a t -> 'a t
(** [remove x m] returns a map containing the same bindings as
[m], except for [x] which is unbound in the returned map.
If [x] was not in [m], [m] is returned unchanged
(the result of the function is then physically equal to [m]).
@before 4.03 Physical equality was not ensured. *)
val merge:
(key -> 'a option -> 'b option -> 'c option) -> 'a t -> 'b t -> 'c t
(** [merge f m1 m2] computes a map whose keys is a subset of keys of [m1]
and of [m2]. The presence of each such binding, and the corresponding
value, is determined with the function [f].
In terms of the [find_opt] operation, we have
[find_opt x (merge f m1 m2) = f (find_opt x m1) (find_opt x m2)]
for any key [x], provided that [f None None = None].
@since 3.12.0
*)
val union: (key -> 'a -> 'a -> 'a option) -> 'a t -> 'a t -> 'a t
(** [union f m1 m2] computes a map whose keys is the union of keys
of [m1] and of [m2]. When the same binding is defined in both
arguments, the function [f] is used to combine them.
This is a special case of [merge]: [union f m1 m2] is equivalent
to [merge f' m1 m2], where
- [f' None None = None]
- [f' (Some v) None = Some v]
- [f' None (Some v) = Some v]
- [f' (Some v1) (Some v2) = f v1 v2]
@since 4.03.0
*)
val compare: ('a -> 'a -> int) -> 'a t -> 'a t -> int
(** Total ordering between maps. The first argument is a total ordering
used to compare data associated with equal keys in the two maps. *)
val equal: ('a -> 'a -> bool) -> 'a t -> 'a t -> bool
(** [equal cmp m1 m2] tests whether the maps [m1] and [m2] are
equal, that is, contain equal keys and associate them with
equal data. [cmp] is the equality predicate used to compare
the data associated with the keys. *)
val iter: (key -> 'a -> unit) -> 'a t -> unit
(** [iter f m] applies [f] to all bindings in map [m].
[f] receives the key as first argument, and the associated value
as second argument. The bindings are passed to [f] in increasing
order with respect to the ordering over the type of the keys. *)
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
(** [fold f m a] computes [(f kN dN ... (f k1 d1 a)...)],
where [k1 ... kN] are the keys of all bindings in [m]
(in increasing order), and [d1 ... dN] are the associated data. *)
val for_all: (key -> 'a -> bool) -> 'a t -> bool
(** [for_all p m] checks if all the bindings of the map
satisfy the predicate [p].
@since 3.12.0
*)
val exists: (key -> 'a -> bool) -> 'a t -> bool
(** [exists p m] checks if at least one binding of the map
satisfies the predicate [p].
@since 3.12.0
*)
val filter: (key -> 'a -> bool) -> 'a t -> 'a t
(** [filter p m] returns the map with all the bindings in [m]
that satisfy predicate [p]. If [p] satisfies every binding in [m],
[m] is returned unchanged (the result of the function is then
physically equal to [m])
@since 3.12.0
@before 4.03 Physical equality was not ensured.
*)
val partition: (key -> 'a -> bool) -> 'a t -> 'a t * 'a t
(** [partition p m] returns a pair of maps [(m1, m2)], where
[m1] contains all the bindings of [s] that satisfy the
predicate [p], and [m2] is the map with all the bindings of
[s] that do not satisfy [p].
@since 3.12.0
*)
val cardinal: 'a t -> int
(** Return the number of bindings of a map.
@since 3.12.0
*)
val bindings: 'a t -> (key * 'a) list
(** Return the list of all bindings of the given map.
The returned list is sorted in increasing order with respect
to the ordering [Ord.compare], where [Ord] is the argument
given to {!Map.Make}.
@since 3.12.0
*)
val min_binding: 'a t -> (key * 'a)
(** Return the smallest binding of the given map
(with respect to the [Ord.compare] ordering), or raise
[Not_found] if the map is empty.
@since 3.12.0
*)
val min_binding_opt: 'a t -> (key * 'a) option
(** Return the smallest binding of the given map
(with respect to the [Ord.compare] ordering), or [None]
if the map is empty.
@since 4.05
*)
val max_binding: 'a t -> (key * 'a)
(** Same as {!Map.S.min_binding}, but returns the largest binding
of the given map.
@since 3.12.0
*)
val max_binding_opt: 'a t -> (key * 'a) option
(** Same as {!Map.S.min_binding_opt}, but returns the largest binding
of the given map.
@since 4.05
*)
val choose: 'a t -> (key * 'a)
(** Return one binding of the given map, or raise [Not_found] if
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 3.12.0
*)
val choose_opt: 'a t -> (key * 'a) option
(** Return one binding of the given map, or [None] if
the map is empty. Which binding is chosen is unspecified,
but equal bindings will be chosen for equal maps.
@since 4.05
*)
val split: key -> 'a t -> 'a t * 'a option * 'a t
(** [split x m] returns a triple [(l, data, r)], where
[l] is the map with all the bindings of [m] whose key
is strictly less than [x];
[r] is the map with all the bindings of [m] whose key
is strictly greater than [x];
[data] is [None] if [m] contains no binding for [x],
or [Some v] if [m] binds [v] to [x].
@since 3.12.0
*)
val find: key -> 'a t -> 'a
(** [find x m] returns the current binding of [x] in [m],
or raises [Not_found] if no such binding exists. *)
val find_opt: key -> 'a t -> 'a option
(** [find_opt x m] returns [Some v] if the current binding of [x]
in [m] is [v], or [None] if no such binding exists.
@since 4.05
*)
val find_first: (key -> bool) -> 'a t -> key * 'a
(** [find_first f m], where [f] is a monotonically increasing function,
returns the binding of [m] with the lowest key [k] such that [f k],
or raises [Not_found] if no such key exists.
For example, [find_first (fun k -> Ord.compare k x >= 0) m] will return
the first binding [k, v] of [m] where [Ord.compare k x >= 0]
(intuitively: [k >= x]), or raise [Not_found] if [x] is greater than any
element of [m].
@since 4.05
*)
val find_first_opt: (key -> bool) -> 'a t -> (key * 'a) option
(** [find_first_opt f m], where [f] is a monotonically increasing function,
returns an option containing the binding of [m] with the lowest key [k]
such that [f k], or [None] if no such key exists.
@since 4.05
*)
val find_last: (key -> bool) -> 'a t -> key * 'a
(** [find_last f m], where [f] is a monotonically decreasing function,
returns the binding of [m] with the highest key [k] such that [f k],
or raises [Not_found] if no such key exists.
@since 4.05
*)
val find_last_opt: (key -> bool) -> 'a t -> (key * 'a) option
(** [find_last_opt f m], where [f] is a monotonically decreasing function,
returns an option containing the binding of [m] with the highest key [k]
such that [f k], or [None] if no such key exists.
@since 4.05
*)
val map: ('a -> 'b) -> 'a t -> 'b t
(** [map f m] returns a map with same domain as [m], where the
associated value [a] of all bindings of [m] has been
replaced by the result of the application of [f] to [a].
The bindings are passed to [f] in increasing order
with respect to the ordering over the type of the keys. *)
val mapi: (key -> 'a -> 'b) -> 'a t -> 'b t
(** Same as {!Map.S.map}, but the function receives as arguments both the
key and the associated value for each binding of the map. *)
end
(** Output signature of the functor {!Map.Make}. *)
module Make (Ord : OrderedType) : S with type key = Ord.t
(** Functor building an implementation of the map structure
given a totally ordered type. *)
|