/usr/lib/ocaml/hashtbl.ml is in ocaml-nox 4.05.0-10ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 | (**************************************************************************)
(* *)
(* OCaml *)
(* *)
(* Xavier Leroy, projet Cristal, INRIA Rocquencourt *)
(* *)
(* Copyright 1996 Institut National de Recherche en Informatique et *)
(* en Automatique. *)
(* *)
(* All rights reserved. This file is distributed under the terms of *)
(* the GNU Lesser General Public License version 2.1, with the *)
(* special exception on linking described in the file LICENSE. *)
(* *)
(**************************************************************************)
(* Hash tables *)
external seeded_hash_param :
int -> int -> int -> 'a -> int = "caml_hash" [@@noalloc]
external old_hash_param :
int -> int -> 'a -> int = "caml_hash_univ_param" [@@noalloc]
let hash x = seeded_hash_param 10 100 0 x
let hash_param n1 n2 x = seeded_hash_param n1 n2 0 x
let seeded_hash seed x = seeded_hash_param 10 100 seed x
(* We do dynamic hashing, and resize the table and rehash the elements
when buckets become too long. *)
type ('a, 'b) t =
{ mutable size: int; (* number of entries *)
mutable data: ('a, 'b) bucketlist array; (* the buckets *)
mutable seed: int; (* for randomization *)
mutable initial_size: int; (* initial array size *)
}
and ('a, 'b) bucketlist =
Empty
| Cons of { mutable key: 'a;
mutable data: 'b;
mutable next: ('a, 'b) bucketlist }
(* The sign of initial_size encodes the fact that a traversal is
ongoing or not.
This disables the efficient in place implementation of resizing.
*)
let ongoing_traversal h =
Obj.size (Obj.repr h) < 4 (* compatibility with old hash tables *)
|| h.initial_size < 0
let flip_ongoing_traversal h =
h.initial_size <- - h.initial_size
(* To pick random seeds if requested *)
let randomized_default =
let params =
try Sys.getenv "OCAMLRUNPARAM" with Not_found ->
try Sys.getenv "CAMLRUNPARAM" with Not_found -> "" in
String.contains params 'R'
let randomized = ref randomized_default
let randomize () = randomized := true
let is_randomized () = !randomized
let prng = lazy (Random.State.make_self_init())
(* Creating a fresh, empty table *)
let rec power_2_above x n =
if x >= n then x
else if x * 2 > Sys.max_array_length then x
else power_2_above (x * 2) n
let create ?(random = !randomized) initial_size =
let s = power_2_above 16 initial_size in
let seed = if random then Random.State.bits (Lazy.force prng) else 0 in
{ initial_size = s; size = 0; seed = seed; data = Array.make s Empty }
let clear h =
h.size <- 0;
let len = Array.length h.data in
for i = 0 to len - 1 do
h.data.(i) <- Empty
done
let reset h =
let len = Array.length h.data in
if Obj.size (Obj.repr h) < 4 (* compatibility with old hash tables *)
|| len = abs h.initial_size then
clear h
else begin
h.size <- 0;
h.data <- Array.make (abs h.initial_size) Empty
end
let copy_bucketlist = function
| Empty -> Empty
| Cons {key; data; next} ->
let rec loop prec = function
| Empty -> ()
| Cons {key; data; next} ->
let r = Cons {key; data; next} in
begin match prec with
| Empty -> assert false
| Cons prec -> prec.next <- r
end;
loop r next
in
let r = Cons {key; data; next} in
loop r next;
r
let copy h = { h with data = Array.map copy_bucketlist h.data }
let length h = h.size
let resize indexfun h =
let odata = h.data in
let osize = Array.length odata in
let nsize = osize * 2 in
if nsize < Sys.max_array_length then begin
let ndata = Array.make nsize Empty in
let ndata_tail = Array.make nsize Empty in
let inplace = not (ongoing_traversal h) in
h.data <- ndata; (* so that indexfun sees the new bucket count *)
let rec insert_bucket = function
| Empty -> ()
| Cons {key; data; next} as cell ->
let cell =
if inplace then cell
else Cons {key; data; next = Empty}
in
let nidx = indexfun h key in
begin match ndata_tail.(nidx) with
| Empty -> ndata.(nidx) <- cell;
| Cons tail -> tail.next <- cell;
end;
ndata_tail.(nidx) <- cell;
insert_bucket next
in
for i = 0 to osize - 1 do
insert_bucket odata.(i)
done;
if inplace then
for i = 0 to nsize - 1 do
match ndata_tail.(i) with
| Empty -> ()
| Cons tail -> tail.next <- Empty
done;
end
let key_index h key =
(* compatibility with old hash tables *)
if Obj.size (Obj.repr h) >= 3
then (seeded_hash_param 10 100 h.seed key) land (Array.length h.data - 1)
else (old_hash_param 10 100 key) mod (Array.length h.data)
let add h key data =
let i = key_index h key in
let bucket = Cons{key; data; next=h.data.(i)} in
h.data.(i) <- bucket;
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize key_index h
let rec remove_bucket h i key prec = function
| Empty ->
()
| (Cons {key=k; next}) as c ->
if compare k key = 0
then begin
h.size <- h.size - 1;
match prec with
| Empty -> h.data.(i) <- next
| Cons c -> c.next <- next
end
else remove_bucket h i key c next
let remove h key =
let i = key_index h key in
remove_bucket h i key Empty h.data.(i)
let rec find_rec key = function
| Empty ->
raise Not_found
| Cons{key=k; data; next} ->
if compare key k = 0 then data else find_rec key next
let find h key =
match h.data.(key_index h key) with
| Empty -> raise Not_found
| Cons{key=k1; data=d1; next=next1} ->
if compare key k1 = 0 then d1 else
match next1 with
| Empty -> raise Not_found
| Cons{key=k2; data=d2; next=next2} ->
if compare key k2 = 0 then d2 else
match next2 with
| Empty -> raise Not_found
| Cons{key=k3; data=d3; next=next3} ->
if compare key k3 = 0 then d3 else find_rec key next3
let rec find_rec_opt key = function
| Empty ->
None
| Cons{key=k; data; next} ->
if compare key k = 0 then Some data else find_rec_opt key next
let find_opt h key =
match h.data.(key_index h key) with
| Empty -> None
| Cons{key=k1; data=d1; next=next1} ->
if compare key k1 = 0 then Some d1 else
match next1 with
| Empty -> None
| Cons{key=k2; data=d2; next=next2} ->
if compare key k2 = 0 then Some d2 else
match next2 with
| Empty -> None
| Cons{key=k3; data=d3; next=next3} ->
if compare key k3 = 0 then Some d3 else find_rec_opt key next3
let find_all h key =
let rec find_in_bucket = function
| Empty ->
[]
| Cons{key=k; data; next} ->
if compare k key = 0
then data :: find_in_bucket next
else find_in_bucket next in
find_in_bucket h.data.(key_index h key)
let rec replace_bucket key data = function
| Empty ->
true
| Cons ({key=k; next} as slot) ->
if compare k key = 0
then (slot.key <- key; slot.data <- data; false)
else replace_bucket key data next
let replace h key data =
let i = key_index h key in
let l = h.data.(i) in
if replace_bucket key data l then begin
h.data.(i) <- Cons{key; data; next=l};
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize key_index h
end
let mem h key =
let rec mem_in_bucket = function
| Empty ->
false
| Cons{key=k; next} ->
compare k key = 0 || mem_in_bucket next in
mem_in_bucket h.data.(key_index h key)
let iter f h =
let rec do_bucket = function
| Empty ->
()
| Cons{key; data; next} ->
f key data; do_bucket next in
let old_trav = ongoing_traversal h in
if not old_trav then flip_ongoing_traversal h;
try
let d = h.data in
for i = 0 to Array.length d - 1 do
do_bucket d.(i)
done;
if not old_trav then flip_ongoing_traversal h;
with exn when not old_trav ->
flip_ongoing_traversal h;
raise exn
let rec filter_map_inplace_bucket f h i prec = function
| Empty ->
begin match prec with
| Empty -> h.data.(i) <- Empty
| Cons c -> c.next <- Empty
end
| (Cons ({key; data; next} as c)) as slot ->
begin match f key data with
| None ->
h.size <- h.size - 1;
filter_map_inplace_bucket f h i prec next
| Some data ->
begin match prec with
| Empty -> h.data.(i) <- slot
| Cons c -> c.next <- slot
end;
c.data <- data;
filter_map_inplace_bucket f h i slot next
end
let filter_map_inplace f h =
let d = h.data in
let old_trav = ongoing_traversal h in
if not old_trav then flip_ongoing_traversal h;
try
for i = 0 to Array.length d - 1 do
filter_map_inplace_bucket f h i Empty h.data.(i)
done
with exn when not old_trav ->
flip_ongoing_traversal h;
raise exn
let fold f h init =
let rec do_bucket b accu =
match b with
Empty ->
accu
| Cons{key; data; next} ->
do_bucket next (f key data accu) in
let old_trav = ongoing_traversal h in
if not old_trav then flip_ongoing_traversal h;
try
let d = h.data in
let accu = ref init in
for i = 0 to Array.length d - 1 do
accu := do_bucket d.(i) !accu
done;
if not old_trav then flip_ongoing_traversal h;
!accu
with exn when not old_trav ->
flip_ongoing_traversal h;
raise exn
type statistics = {
num_bindings: int;
num_buckets: int;
max_bucket_length: int;
bucket_histogram: int array
}
let rec bucket_length accu = function
| Empty -> accu
| Cons{next} -> bucket_length (accu + 1) next
let stats h =
let mbl =
Array.fold_left (fun m b -> max m (bucket_length 0 b)) 0 h.data in
let histo = Array.make (mbl + 1) 0 in
Array.iter
(fun b ->
let l = bucket_length 0 b in
histo.(l) <- histo.(l) + 1)
h.data;
{ num_bindings = h.size;
num_buckets = Array.length h.data;
max_bucket_length = mbl;
bucket_histogram = histo }
(* Functorial interface *)
module type HashedType =
sig
type t
val equal: t -> t -> bool
val hash: t -> int
end
module type SeededHashedType =
sig
type t
val equal: t -> t -> bool
val hash: int -> t -> int
end
module type S =
sig
type key
type 'a t
val create: int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy: 'a t -> 'a t
val add: 'a t -> key -> 'a -> unit
val remove: 'a t -> key -> unit
val find: 'a t -> key -> 'a
val find_opt: 'a t -> key -> 'a option
val find_all: 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter: (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace: (key -> 'a -> 'a option) -> 'a t -> unit
val fold: (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length: 'a t -> int
val stats: 'a t -> statistics
end
module type SeededS =
sig
type key
type 'a t
val create : ?random:bool -> int -> 'a t
val clear : 'a t -> unit
val reset : 'a t -> unit
val copy : 'a t -> 'a t
val add : 'a t -> key -> 'a -> unit
val remove : 'a t -> key -> unit
val find : 'a t -> key -> 'a
val find_opt: 'a t -> key -> 'a option
val find_all : 'a t -> key -> 'a list
val replace : 'a t -> key -> 'a -> unit
val mem : 'a t -> key -> bool
val iter : (key -> 'a -> unit) -> 'a t -> unit
val filter_map_inplace: (key -> 'a -> 'a option) -> 'a t -> unit
val fold : (key -> 'a -> 'b -> 'b) -> 'a t -> 'b -> 'b
val length : 'a t -> int
val stats: 'a t -> statistics
end
module MakeSeeded(H: SeededHashedType): (SeededS with type key = H.t) =
struct
type key = H.t
type 'a hashtbl = (key, 'a) t
type 'a t = 'a hashtbl
let create = create
let clear = clear
let reset = reset
let copy = copy
let key_index h key =
(H.hash h.seed key) land (Array.length h.data - 1)
let add h key data =
let i = key_index h key in
let bucket = Cons{key; data; next=h.data.(i)} in
h.data.(i) <- bucket;
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize key_index h
let rec remove_bucket h i key prec = function
| Empty ->
()
| (Cons {key=k; next}) as c ->
if H.equal k key
then begin
h.size <- h.size - 1;
match prec with
| Empty -> h.data.(i) <- next
| Cons c -> c.next <- next
end
else remove_bucket h i key c next
let remove h key =
let i = key_index h key in
remove_bucket h i key Empty h.data.(i)
let rec find_rec key = function
| Empty ->
raise Not_found
| Cons{key=k; data; next} ->
if H.equal key k then data else find_rec key next
let find h key =
match h.data.(key_index h key) with
| Empty -> raise Not_found
| Cons{key=k1; data=d1; next=next1} ->
if H.equal key k1 then d1 else
match next1 with
| Empty -> raise Not_found
| Cons{key=k2; data=d2; next=next2} ->
if H.equal key k2 then d2 else
match next2 with
| Empty -> raise Not_found
| Cons{key=k3; data=d3; next=next3} ->
if H.equal key k3 then d3 else find_rec key next3
let rec find_rec_opt key = function
| Empty ->
None
| Cons{key=k; data; next} ->
if H.equal key k then Some data else find_rec_opt key next
let find_opt h key =
match h.data.(key_index h key) with
| Empty -> None
| Cons{key=k1; data=d1; next=next1} ->
if H.equal key k1 then Some d1 else
match next1 with
| Empty -> None
| Cons{key=k2; data=d2; next=next2} ->
if H.equal key k2 then Some d2 else
match next2 with
| Empty -> None
| Cons{key=k3; data=d3; next=next3} ->
if H.equal key k3 then Some d3 else find_rec_opt key next3
let find_all h key =
let rec find_in_bucket = function
| Empty ->
[]
| Cons{key=k; data=d; next} ->
if H.equal k key
then d :: find_in_bucket next
else find_in_bucket next in
find_in_bucket h.data.(key_index h key)
let rec replace_bucket key data = function
| Empty ->
true
| Cons ({key=k; next} as slot) ->
if H.equal k key
then (slot.key <- key; slot.data <- data; false)
else replace_bucket key data next
let replace h key data =
let i = key_index h key in
let l = h.data.(i) in
if replace_bucket key data l then begin
h.data.(i) <- Cons{key; data; next=l};
h.size <- h.size + 1;
if h.size > Array.length h.data lsl 1 then resize key_index h
end
let mem h key =
let rec mem_in_bucket = function
| Empty ->
false
| Cons{key=k; next} ->
H.equal k key || mem_in_bucket next in
mem_in_bucket h.data.(key_index h key)
let iter = iter
let filter_map_inplace = filter_map_inplace
let fold = fold
let length = length
let stats = stats
end
module Make(H: HashedType): (S with type key = H.t) =
struct
include MakeSeeded(struct
type t = H.t
let equal = H.equal
let hash (_seed: int) x = H.hash x
end)
let create sz = create ~random:false sz
end
|