This file is indexed.

/usr/share/nrn/lib/hoc/loadbal.hoc is in neuron 7.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
{load_file("stdgui.hoc")}
// utility to help compute computational complexity of a cell
// and determine best split locations
begintemplate LoadBalance
public cell_complexity, subtree_complexity, secref, resolutions
public ExperimentalMechComplex, distrib, multisplit, read_load_balance_info, cpu_complexity
public sec_complex_, roots_complex_, cell_complexity_, m_complex_, ion_complex_, cplx
public srlist, backbone_cx_, mt, compute_roots, parent_vec_
public host, gid, splitx, spliti, splitb, unsplitx, splitbit, read_mcomplex
public thread_partition, slthread, thread_cxbal_, npiece_, pieces_cx, lpt
external hoc_obj_, hoc_sf_, cvode
objref srlist, sec_complex_, roots_complex_, parent_vec_, save_capac_
objref mt[2], m_complex_[2], cplx, this, pc, ion_complex_
objref slthread[1]
objref cx_piece_indices, bb_piece_cx
strdef mname
// temporaries for distrib
objref cvec, splitxlist, splitixlist, cpu, splitcplx, splitindex, allocated, sorted, sp, si
objref splitbrlist, splitbres, sb
objref gid, splitx, spliti, splitb, host
objref unsplitx


proc init() {local i, j  localobj ms
	if (numarg() == 0) {
		pc = new ParallelContext()
	}else{
		pc = $o1
	}
	backbone_cx_ = .6 // extra complexity due to backbone segments
	thread_cxbal_ = 1.0
	splitbit = 2^28
	sec_complex_ = new Vector()
	roots_complex_ = new Vector()
	parent_vec_ = new Vector()
	for j=0, 1 {
		mt[j] = new MechanismType(j)
		m_complex_[j] = new Vector(mt[j].count)
		if (j == 0) {ion_complex_ = new Vector(mt[0].count)}
		for i=0, mt[j].count-1 {
			if (j == 1) if(mt[j].is_artificial(i) == 1) continue
			mt[j].select(i)
			mt[j].selected(mname)
			ms = new MechanismStandard(mname, 3)
			m_complex_[j].x[i] = 1 + ms.count
//			printf("complexity %d for %s\n", m_complex_[j].x[i], mname)
			if (j == 0 && hoc_sf_.substr(mname, "_ion") != -1) {
				m_complex_[j].x[i] = 0
				ion_complex_.x[i] = 1
			}
		}
	}
}

iterator sections() {local i
	for i=0, srlist.count-1 srlist.object(i).sec {
		$&1 = i
		iterator_statement
	}
}

// least processing time algorithm
// $o1 is vector of weights  $2 is number of partitions
// return is vector of partition indices parallel to weights
obfunc lpt() {local i, j  localobj wx, ix, pw
	if ($3) {
		print $o1.size, " piece weights"
		$o1.printf
	}
	wx = $o1.sortindex.reverse
	ix = new Vector($o1.size)
	pw = new Vector($2)
	for i=0, $o1.size-1 {
		j = wx.x[i]
		w = $o1.x[j]
		ip = pw.min_ind
		pw.x[ip] += w
		ix.x[j] = ip
	}
	if ($3) {
		print $2, " partition complexities"
		pw.printf
	}
	if (pw.mean) {
		thread_cxbal_ = pw.max/(pw.mean)
	}else{
		thread_cxbal_ = 1
	}
	return ix
}

// piece complexities can only be called after srlist exists
obfunc pieces_cx() {local i  localobj cx, srl, sr, roots
	cx = new Vector()
	roots = new List()
	srl = srlist
	for i = 0, srl.count-1 {
		sr = srl.object(i)
		if (!sr.has_parent) sr.sec {
			roots.append(sr)
			cx.append(cell_complexity())
		}
	}
	if (numarg() == 1) { $o1 = roots }
	return cx
}

// lpt distribution of pieces on all the threads
proc thread_partition() { local i  localobj roots, cx, tid
	cx = pieces_cx(roots)
	npiece_ = roots.count()
//	if (pc.nthread == 1) { return } // do not bother
	tid = lpt(cx, pc.nthread, $1)
	objref slthread[pc.nthread]
	for i=0, pc.nthread - 1 {
		slthread[i] = new SectionList()
	}
	for i=0, tid.size-1 {
		roots.object(i).sec slthread[tid.x[i]].append()
	}
	for i=0, pc.nthread - 1 {
		pc.partition(i, slthread[i])
	}
}

func is_nernst() {
	return int(ion_style($s1)/64)%2
}

// complexity of currently accessed section
func sec_complexity() {local c, i, x  localobj pp
	c = m_complex_[0].x[0] // one zero area node
	for i=1, mt[0].count-1 {
		mt[0].select(i)
		mt[0].selected(mname)
		if (ismembrane(mname)) {
			x = m_complex_[0].x[i]
			if (ion_complex_.x[i] > 0) if (is_nernst(mname)) {
				x = ion_complex_.x[i]
			}
			c += x * nseg
		}
	}
	for i=0, mt[1].count-1 {
		mt[1].select(i)
		for (pp = mt[1].pp_begin; object_id(pp); pp = mt[1].pp_next) {
			c += m_complex_[1].x[i]
		}
	}
	return c
}

// complexity of entire cell containing currently accessed section
// or, if there is an arg, the complexity of the cell object.
// keep the individual section complexities in a parallel vector
// for split analysis
func cell_complexity() {local x, i, c  localobj sl, sr
	sl = new SectionList()
	if (numarg() == 1) {
		if (!execute1("{all}", $o1, 0)) {
			srlist = new List()
			sec_complex_.resize(0)
			return 0
		}
		forsec $o1.all {
			if (object_id(sr) == 0) {
				sr = new SectionRef()
			}
		}
		sr.sec { sl.wholetree() }
	}else{
		sl.wholetree() // note this is root to leaf order
	}
	return cplx_helper(sl) + m_complex_[0].x[0]
}
func cpu_complexity() { local n  localobj s, sl
	s = new String()
	srlist = new SectionList()
	srlist.allroots()
	n = 0 forsec srlist { n += 1 }
	sl = new SectionList()
	forsec srlist { sl.wholetree() }
	return cplx_helper(sl) + n * m_complex_[0].x[0]
}
func cplx_helper() {local x, i, c  localobj sl
	sl = $o1
	srlist = new List()
	forsec sl { srlist.append(new SectionRef()) }
	sec_complex_.resize(srlist.count)
	c = 0
	for sections(&i) {
		x = sec_complexity()	
		sec_complex_.x[i] = x
		c += x
	}
	cell_complexity_ = c
	return c
}

proc compute_roots() {local i
	// construct a trueparent index vector
	save_capac()
	for sections(&i) { cm(.0001) = i }
	parent_vec_.resize(srlist.count)
	for i=0, srlist.count-1 {
		if (srlist.object(i).has_trueparent) {
			srlist.object(i).trueparent {parent_vec_.x[i] = cm(.0001)}
		}else if (srlist.object(i).has_parent) {
			srlist.object(i).parent {parent_vec_.x[i] = cm(.0001)}
		}else{
			parent_vec_.x[i] = -1
		}		
	}
	restore_capac()

	// accumulate the subtree complexities
	roots_complex_.copy(sec_complex_)
	for (i = srlist.count-1; i > 0; i -= 1) {
		if (parent_vec_.x[i] >= 0) {
			roots_complex_.x[parent_vec_.x[i]] += roots_complex_.x[i]
		}
	}
}

// returns the index of the complexity that is closest to the desired
// complexity (argument 1) but less than
// or equal to the upper bound complexity (argument 2)
// Note if scalar reference arg3 returns as 0 then the subtree
// rooted at that section index is the one referred to. If 1, then
// subtree rerooted at the parent is the on referred to.
func subtree_complexity() {local i, j, k, min
	compute_roots()
	min = 1e9
	for i = 0, srlist.count-1 {
		c = roots_complex_.x[i]
		if (c < $2 && abs(c - $1) < min) {
			j = i  k = 0  min = abs(c - $1)
		}
		c = cell_complexity_ - c
		if (c < $2 && abs(c - $1) < min) {
			j = i  k = 1  min = abs(c - $1)
		}
	}
	$&3 = k
	return j
}

//returns the SectionRef of the section associated with index (arg1)
obfunc secref() {
	return srlist.object($1)
}

//returns a vector with the distinct possible resolutions
//the indices of these resolutions are returned as a new parallel vector in $o1
// and the branch set index as a vector in $o2.
// note that at a branch point where n sections connect together
// with m different complexities,
// there are n!/(n - m)! - 1 potentially distinct complexity resolutions.
// For complicated trees, e.g. 3d reconstructions, most often n = 3 and
// so there are generally 5 resolutions available. The TCR Traub
// cell has 10 subtrees each of weight 418 connected to a soma/axon
// subtree of weight 4306 - 10*418 = 126 so there would be
// 11*10 - 1 possible resolutions at the 1 end of the soma.

obfunc resolutions() {local i, j, ibegin, pbegin, c, oldres \
    localobj si, res, v1, v2, bres, corder
	compute_roots()

	v1 = new Vector()
	v2 = new Vector()
	res = new Vector()
	bres = new Vector()
	corder = new Vector()
	if (srlist.count == 0) {
		$o1 = v2
		$o2 = bres
		return v1
	}

	si = parent_vec_.sortindex
	ibegin = 0
	pbegin = parent_vec_.x[si.x[ibegin]]

	for i=0, si.size-1 {
		if (parent_vec_.x[si.x[i]] == pbegin) {continue}
	    if (parent_vec_.x[si.x[ibegin]] >= 0) { // do not allow split at root
		n = i - ibegin
		res.resize(n)
		corder.resize(n)
		// child resolutions of the pbegin index
		for j=0, n-1 {
			res.x[j] = roots_complex_.x[si.x[j + ibegin]]
			corder.x[j] = si.x[j + ibegin]
		}
		// want the res to be in child order
		corder = corder.sortindex
		res.index(res, corder)
		// the parent tree is implicit with respect to the
		// remainder

		// for simplicity, instead of analyzing all the
		// possiblities, just do all individual and the sums
		// (and, of course, the remainders). Associate every
		// resolution with ibegin and a index for the
		// specific branch set. Note that this gets all of
		// the binary branch combinations and is good
		// for stylized multibranches where all are identical

		// individuals
		c = cell_complexity_
		for j=0, n-1 {
			v1.append(res.x[j])
			v1.append(c - res.x[j])	
			v2.append(si.x[ibegin])
			v2.append(si.x[ibegin])
			bres.append(j+1)
			bres.append(-(j+1))
		}
		// sums
		oldres = res.x[0]
		for j=1, n-1 {
			oldres += res.x[j]
			if (oldres < c) {
				v1.append(oldres)
				v1.append(c - oldres)	
				v2.append(si.x[ibegin])
				v2.append(si.x[ibegin])
				bres.append(n+j)
				bres.append(-(n+j))
			}
		}
	    }
		ibegin = i
		pbegin = parent_vec_.x[si.x[ibegin]]
	}
	// now only the distinct ones
	si = v1.sortindex
	v1.index(v1, si)
	v2.index(v2, si)
	bres.index(bres, si)
	for (i=v1.size-1; i >= 1; i -= 1) {
		if (v1.x[i] == v1.x[i-1]) {
			v1.remove(i)
			v2.remove(i)
			bres.remove(i)
		}
	}
	$o1 = v2
	$o2 = bres
	return v1
}

proc save_capac() {local i
	save_capac_ = new Vector(sec_complex_.size)
	for sections(&i) {
		save_capac_.x[i] = cm(.0001)
	}
}

proc restore_capac() {local i
	for sections(&i) {
		cm(.0001) = save_capac_.x[i]
	}
}

// all the mechanism type 0 then 1, then base and ion with style eadvance (64 bit set)
// generate a vector of computation time and a list of type vectors of types inserted

proc setcol() {local i
	for i=0, $o1.nrow-1 {
		$o1.x[i][$2] = $3
	}
}

proc ExperimentalMechComplex() {local i, j, k, b, ts, ns, baseindex, irun, par \
  localobj s, cmd, sr, ionindices, ct, names, ninstance, pc, ionname, f, dvec, vcnts, dvec1
	//if something uses a mechanism of type i then if ionindices.x[i] > 0 then
	// the mechanism is an ion and if the eadvance bit is set for the ionstyle
	// then the index for the element is ionindices.x[i]
	pc = new ParallelContext()
	par = 0 if (pc.nhost > 1) { par = 1 dvec = new Vector() }
//printf("id=%d nhost=%d\n", pc.id, pc.nhost)
	baseindex = mt[0].count + mt[1].count
	j = baseindex + 1
	ionindices = new Vector(mt[0].count)
	s = new String()
	ionname = new String()
	for i=0, mt[0].count-1 {
		mt[0].select(i)
		mt[0].selected(s.s)
		if (hoc_sf_.substr(s.s, "_ion") != -1) {
			ionindices.x[i] = j
			j += 1
		}
	}
	// start empty
	forall delete_section()
	// do three runs for each mechanism
	ct = new Matrix(j, 3)
	names = new List()
	for i=0, ct.nrow-1 {
		names.append(new String())
	}
	ninstance = new Matrix(j, j, 2)
	// fixed step with cache efficiency
	cvode.active(0)
	cvode.cache_efficient(1)

	cmd = new String()
	ts = 100
	ns = 100
	for irun=0, ct.ncol-1 {
		ct.x[baseindex][irun] = dorun(ts)
	}
//	setcol(ninstance,baseindex,1) // everyone has the overhead
	names.o(baseindex).s = "overhead"
	// morphology and capacitance go together by default. But treat 0 and 1
	// as 100 empty sections with one segment and 1 empty section with 100
	// segments respectively
	sr = makesec(ns, 1)
	for irun=0, ct.ncol-1 {
		ct.x[0][irun] = dorun(ts)
	}
//	setcol(ninstance, 0, 2) // everyone has 2 zero area nodes except
//	ninstance.x[0][0] = 1 + ns // this one is sausage of ns sections
//	ninstance.x[baseindex][0] = 0 // overhead has none
	names.o(0).s = "zero_area_node"
	sr = makesec(1, ns)
	for irun=0, ct.ncol-1 {
		ct.x[1][irun] = dorun(ts)
	}	
//	setcol(ninstance, 1, ns) // everyone has capacitance
	names.o(1).s = "capacitance"
	// from now on 1 section ns segments
	for j=0, 1 for k = 0, mt[j].count-1 {
		if (j == 0 && k < 2) { continue }
		kk = k + j*mt[0].count
		mt[j].select(k)
		mt[j].selected(s.s)
		names.o(kk).s = s.s
		// parallelism added on top of working version
		b = 1
		if (kk%pc.nhost != pc.id) {
			b = 0
		}
		// ions must be done on id 0 (because names for
		// ionindices.x[k] needs to be assigned )
		if (j == 0) if (ionindices.x[k] > 0) {
			if (pc.id == 0) {
				b = 1
			}else{
				b = 0
			}
		}
		if (b == 0) {
			continue
		}
//printf("%d %s\n", pc.id, s.s)
		sr = makesec(1, ns)
		b = 0
		for i=1, numarg() {
			if (hoc_sf_.substr(s.s, $si) != -1) { b = 1 }
		}
		if (b) { continue }
		
		if (j == 0) {
			sprint(cmd.s, "insert %s", s.s)
		}else{
			if (mt[j].is_artificial(k)) { continue }
			hoc_obj_ = new List(ns)
sprint(cmd.s, "for (hoc_ac_, 0) hoc_obj_.append(new %s(hoc_ac_))", s.s)
		}
		sr.sec execute(cmd.s)
		if (dorun(1) == 1000) {
			printf("mcomplex failed for %s\n", s.s)
			continue
		}
		
		if (par) { dvec.append(kk) }
		for irun=0, ct.ncol-1 {
			ct.x[kk][irun] = dorun(ts)
			if (par) { dvec.append(ct.x[kk][irun]) }
		}
//		ninstance.x[kk][kk] = ns
		// if it is an ion, do again with style eadvance
		b = 0
		if (j == 0) if (ionindices.x[k] > 0) { b = 1 }
		if (b) {
			ion_style(s.s, 3, 2, 1, 1, 0)
			for irun=0, ct.ncol-1 {
				ct.x[ionindices.x[k]][irun] = dorun(ts)
			}
			ninstance.x[ionindices.x[k]][ionindices.x[k]] = ns
			names.o(ionindices.x[k]).s = s.s
		}else{ // otherwise, what ions are used with what style
			for i=2, ionindices.size-1 if (ionindices.x[i] > 0) {
				mt[0].select(i)
				mt[0].selected(ionname.s)
				sr.sec if (ismembrane(ionname.s)) {
					if (int(ion_style(ionname.s)/64)%2) {
						//eadvance is 1
						ninstance.x[kk][ionindices.x[i]] = ns
					}else{
						ninstance.x[kk][i] = ns
					}
				}
			}
		}
	}
	execute("objref hoc_obj_[2]")
	if (object_id(sr)) sr.sec delete_section()
	if (par) {// now do an alltoall so id 0 has all the info
		vcnts = new Vector(pc.nhost)
		if (pc.id == 0) {dvec.resize(0)}
		vcnts.x[0] = dvec.size
		dvec1 = new Vector()
		pc.alltoall(dvec, vcnts, dvec1)
		for (i=0; i < dvec1.size; i += ct.ncol+1) {
			kk = dvec1.x[i]
			for irun=0, ct.ncol-1 {
				ct.x[kk][irun] = dvec1.x[i+irun+1]
			}
		}
		if (pc.id > 0) { // the id==0 barrier is at the end
			pc.barrier()
			return
		}
	}
	// lastly, get some indication of time it takes to solve a backbone
	if (0) {
		pc.gid_clear()
		sr.sec delete_section()
		sr = makesec(ns)	
		sr.sec {
			pc.multisplit(0, 1, 2)
			pc.multisplit(1, 2, 2)
		}		
		pc.multisplit()
		cx = (dorun(ts)-base)/base
		if (cx < 0) { cx = 0 }
		printf("backbone %g\n", cx)
		pc.gid_clear()
		sr.sec delete_section()
	}
	// subtract the overhead
	f = ct.getrow(baseindex)
	for i=0, ct.nrow-1 if (i != baseindex) {
		ct.setrow(i, ct.getrow(i).sub(f))
	}
	// the capacitance contains the zero area node contribution. subtract from mech
	f = ct.getrow(1)
	for i=2, ct.nrow-1 if (i != baseindex) {
		ct.setrow(i, ct.getrow(i).sub(f))
	}
	// separate the zero-area_node and the capacitance
	ct.setrow(0, ct.getrow(0).sub(ct.getrow(1)).div(ns-1)) // single zero-area-node
	ct.setrow(1, ct.getrow(1).sub(ct.getrow(0).mul(2)).div(ns)) // single capacitance after subtract two zero nodes

	// subtract ions from mechanisms
	for i=2, baseindex-1 {
		for k = 0, ninstance.sprowlen(i)-1 {
			ninstance.spgetrowval(i, k, &j)
			ct.setrow(i, ct.getrow(i).sub(ct.getrow(j)))
		}
	}
	// unit values
	for i=2, ct.nrow-1 if (i != baseindex) {
		ct.setrow(i, ct.getrow(i).div(ns))
	}

	f = new File()
	f.wopen("mcomplex.dat")
	// scale to capacitance
	j = ct.getrow(1).mean
	for i=0, ct.nrow-1 {
		// take average. negative is artificial and undone
		k = ct.getrow(i).mean
		if (k < 0) { k = 0 }
		f.printf("%g %s\n", k/j, names.o(i).s)
	}
	f.close()
	if (par) { pc.barrier() }
}

proc read_mcomplex() {local i, j, k, c  localobj f, s, s2, pc
	pc = new ParallelContext()
	f = new File()
	if (!f.ropen("mcomplex.dat")) { return }
	s = new String()
	s2 = new String()
	for j=0,1 {
		k = 0
		for i=0, mt[j].count - 1 {
			c = f.scanvar()
			f.scanstr(s2.s)
			mt[j].select(i)
			mt[j].selected(s.s)
			if (pc.id == 0) if (j == 0 && k == 0) {
  if (strcmp("zero_area_node", s2.s) != 0) { execerror(s2.s, " should be zero_area_node") }
			}else{
			  if (strcmp(s.s, s2.s) != 0) { execerror(s2.s, " not loaded") }
			}
			m_complex_[j].x[k] = c
			k += 1
		}
	}
	c = f.scanvar() f.scanstr(s2.s)
	if (strcmp(s2.s, "overhead") != 0) { execerror(s2.s, "should be overhead")}
	while (f.gets(s.s) != -1) if (hoc_sf_.substr(s.s, "_ion") != -1) {
		sscanf(s.s, "%lf %s", &c, s2.s)
		mt[0].select(s2.s)
		ion_complex_.x[mt[0].selected()] = c
	}
	if (0) {
		for i=0, mt[0].count-1 {
			printf("%g %g\n", m_complex_[0].x[i], ion_complex_.x[i])
		}
		for i=0, mt[1].count-1 {
			printf("%g\n", m_complex_[1].x[i])
		}
	}
}

func dorun() {
	xrun_ = $1
	if (execute1("xrun()", this) == 0) { return 1000 }
	return xrun_
}

proc xrun() {local tstop  localobj pc
	tstop = xrun_
	pc = new ParallelContext()
	finitialize(-70)
	xrun_ = pc.time
	batch_run(tstop, tstop)
	xrun_ = pc.time - xrun_
}

obfunc makesec() {localobj s, sr
	s = new String()
	sprint(s.s, "create tempsec[%d]", $1)
	execute(s.s)
	sprint(s.s, "forall nseg=%d", $2)
	execute(s.s)
	sprint(s.s, "for i=1, %d { connect tempsec[i](0), tempsec[i-1](1) }", $1-1)
	execute(s.s)
	sprint(s.s, "tempsec[0] hoc_obj_[1] = new SectionRef()")
	execute(s.s)
	sr = hoc_obj_[1]
	cvode.use_mxb(0) // extracellular would turn this on
	cvode.cache_efficient(1) // extracellular would turn this off
	return sr
}


//args
//input $1=#ncpu, $o2=Vector of complexity values, $o3=List of Vectors of split point complexities
//   $o4=List of Vectors of split point indices
//   $o8 = List of Vectors of split point branch set indices
//output (parallel to $o2) $o5 = Vector of cpu indices, $o6 = Vector of split point complexity
//   $o7 = Vector of split point indices
//   $o9 = Vector of split point branch set indices
// if a return split point complexity is -1 then means it was not split
// return % load balance error
func distrib() {local i, n
	$o5.resize($o2.size)
	$o6.resize($o2.size)
	$o7.resize($o2.size)
	$o9.resize($o2.size)
	cplx = new Vector()
	for i = 0, 50 {
		cvec = $o2
		splitxlist = $o3
		splitixlist = $o4
		cpu = $o5
		splitcplx = $o6
		splitindex = $o7
		splitbrlist = $o8
		splitbres = $o9
		n = distrib_trial($1, i+.5)
//printf("i=%d n=%d\n", i, n)
		if (n <= $1) { break }
	}
//print "distrib returning with i=",i
	return int((cplx.max*$1/$o2.sum - 1)*100 + .5)
}

func distrib_trial() {local i, i1, j1, j2, j, k, c, cmax, cmin, climit, n, ncpu, margin
	ncpu = $1
	margin = (1 + $2/100)
	
	splitcplx.fill(-1)
	splitindex.fill(0)
	splitbres.fill(0)
	allocated = new Vector(cvec.size)
	sorted = cvec.sortindex
	cplx.resize(0)
	i = 0
	j = sorted.size - 1		
	n = 0
	c = 0
	climit = cvec.sum/ncpu
//printf("climit = %g climit*margin = %g\n", climit, climit*margin)
	while (i <= j) {
		i1 = sorted.x[i] // smallest
		j1 = sorted.x[j] // largest
		if (allocated.x[i1]) { i += 1  continue }
		if (allocated.x[j1]) { j -= 1 continue }
		cmax = cvec.x[j1]
		cmin = cvec.x[i1]
		if (c + cmax <= climit*margin) { // largest whole cell fits into cpu
			cpu.x[j1] = n    // hopefully the most common case
//printf("largest fits j=%d j1=%d cold=%d cmax=%d cnew=%d n=%d\n", j, j1, c, cmax, c+cmax, n)
			c += cmax
			allocated.x[j1] = 1
		}else{ // if (cmax > climit) { // must split
			if (c + cmax > 2*climit) { // may want to defer til c==0
				if (c == 0) { // no choice but to split as evenly as possible
					// and put the largest part first
					cpu.x[j1] = n
					allocated.x[j1] = 1
					sp = splitxlist.object(j1)
					si = splitixlist.object(j1)
					sb = splitbrlist.object(j1)
					k = sp.indwhere(">=", cmax/2)
					splitcplx.x[j1] = sp.x[k]
					splitindex.x[j1] = si.x[k]
					splitbres.x[j1] = sb.x[k]
					c += sp.x[k]
//printf("no choice even split j=%d j1=%d c=%d cmax=%d othersplit=%d", j, j1, c, cmax, cmax-c, n)
					n = addone(n, ncpu, c)
					c = cmax - c
					if (c > climit) {
						// satisfied if n is full
						n = addone(n, ncpu, c)
						c = 0
					}else if ( greedy(i, j, c, climit, margin, &j2, &k) ) {
		// see if there is a cell available which will fill this
		// and the next cpu to within the margin.
						cpu.x[j2] = n
						allocated.x[j2] = 1
						sp = splitxlist.object(j2)
						si = splitixlist.object(j2)
						sb = splitbrlist.object(j2)
						splitcplx.x[j2] = sp.x[k]
						splitindex.x[j2] = si.x[k]
						splitbres.x[j2] = sb.x[k]
						c += sp.x[k]
						n = addone(n, ncpu, c)
						c = cvec.x[j2] - sp.x[k]
						n = addone(n, ncpu, c)
						c = 0
					}else{
						// not clear what to do.
						// attempt to fill more?
						// probably pretty close to full
//printf("fail %d %d\n", n, c)
						n = addone(n, ncpu, c)
						c = 0
					}
				}else if ( greedy(i, j, c, climit, margin, &j2, &k) ) {
		// see if there is a cell available which will fill this
		// and the next cpu to within the margin.
					cpu.x[j2] = n
					allocated.x[j2] = 1
					sp = splitxlist.object(j2)
					si = splitixlist.object(j2)
					sb = splitbrlist.object(j2)
					splitcplx.x[j2] = sp.x[k]
					splitindex.x[j2] = si.x[k]
					splitbres.x[j2] = sb.x[k]
					c += sp.x[k]
					n = addone(n, ncpu, c)
					c = cvec.x[j2] - sp.x[k]
					n = addone(n, ncpu, c)
					c = 0
				}else{
//printf("leave as is, use next cpu c=%d n=%d\n", c, n)
					n = addone(n, ncpu, c)
					c = 0
				}
			}else{ //safe to split
				// fill up n
				cpu.x[j1] = n
				sp = splitxlist.object(j1)
				si = splitixlist.object(j1)
				sb = splitbrlist.object(j1)
				k = sp.indwhere(">=", climit - c)
				if (k == -1) k = sp.size-1
				if (k > 1 && c + sp.x[k] > climit*margin) k -= 1
				if (c + sp.x[k] > climit*margin) {
//printf("leave as is, use next cpu c=%d n=%d\n", c, n)
					n = addone(n, ncpu, c)
					c = 0
					continue
				}
				allocated.x[j1] = 1
				// should check if k-1 is better split point
				splitcplx.x[j1] = sp.x[k]
				splitindex.x[j1] = si.x[k]
				splitbres.x[j1] = sb.x[k]
//printf("safe split j=%d j1=%d cold=%d cmax=%d sp=%d cnew=%d remain=%d n=%d k=%d\n",\
//j, j1, c, cmax, sp.x[k], c+sp.x[k], cmax-sp.x[k], n, k)
				c += sp.x[k]
				n = addone(n, ncpu, c)
				c = cmax - sp.x[k]
			}
		}
	}
	if (c > 0) {
		cplx.append(c)
	}
objref cvec, splitxlist, splitixlist, cpu, splitcplx, splitindex, allocated, sorted, sp, si
objref splitbrlist, splitbres, sb
//printf("trial %d ncpu=%d max=%g avg=%g min=%g %d\n", $2, cplx.size, cplx.max, cplx.mean, cplx.min, cplx.min_ind)
	return cplx.size
}

//greedy(i, j, c, climit, margin, &j2, &k)
func greedy() {local i, i1, k, c, climit, margin, rest, remain, max, min \
  localobj sp
	c = $3
	climit = $4
	margin = $5
	rest = climit*margin
	remain = rest - c
	max = rest + remain
	min = 2*climit - c
	for i = $1, $2 {
		i1 = sorted.x[i]
		if (allocated.x[i1]) { continue }
		if (max < cvec.x[i1]) { continue }
		if (min > cvec.x[i1]) { continue }
		sp = splitxlist.object(i1)
		k = sp.indwhere(">=", climit - c)
		if ( sp.x[k] <= remain && cvec.x[i1] - sp.x[k] <= rest) {
			$&6 = i1
			$&7 = k
			return 1
		}
	}
	return 0
}

func addone() {local n
	cplx.append($3)
	n = $1 + 1
	if (n >= $2) {
//		printf("Warning, increasing the cpu index past %d\n", $2)
	}
	return n
}

proc read_load_balance_info() {local i, n, h, g, si, sx, sb, cx, myid  localobj f
	myid = $2
	f = new File()
	if (!f.ropen($s1)) {
		execerror("could not open", $s1)
	}
	n = f.scanvar()
	host = new Vector()
	gid = new Vector()
	splitx = new Vector()
	spliti = new Vector()
	splitb = new Vector()
	unsplitx = new Vector()
	for i=0, n-1 {
		h = f.scanvar()
		g = f.scanvar()
		si = f.scanvar()
		sb = f.scanvar()
		sx = f.scanvar()
		cx = f.scanvar()
		if (h == myid) {
			host.append(h)
			gid.append(g)
			spliti.append(si)
			splitb.append(sb)
			splitx.append(sx)
			unsplitx.append(cx)
		}else if (h == (myid - 1) && sx > -1) {
			host.append(h)
			gid.append(g)
			spliti.append(si)
			splitb.append(sb)
			splitx.append(sx)
			unsplitx.append(cx)
		}
	}
	f.close()
}

// here we split a cell at the soma and at one other point (to form
// a short backbone) so that the maximum size piece is as small as
// possible. Return the index of the section which we will split
// at the 1 end.

// enhanced to try to split consistent with the optional second arg value for
// maximum complexity

// 12/24/2006 try again. several issues were revealed in the experience
// with the first implementation. Need to divide into possibly many pieces,
// not just 3 and each piece has to be < some max complexity.
// Do not worry about adjacent backbone sizes since we plan on enhancing
// ParallelContext.multisplit to solve exactly anyway. Sometimes branches
// are at several locations on soma. Generally the user will coalesce these
// and the problem will go away. But if not...
// Usually choose a split point at the
// largest branch, but the collection of (smaller) branches at the other point
// may total > cmax. If the collections of branches at both points that do
// not include our largest branch is still > cmax then we are forced to
// have two split points in the soma.
// With respect to returning a result, originally we used a String but that
// is getting out of hand so switch to Vector with a suitable format where
// the information is not too difficult to extract for use by mssel, msdiv,
// and pmetis. Format is
// gid
// total complexity
// how many split points, may be 0 if cell is not split
// for the first split point, the number of subtrees
//    Note, the first subtree of the first split point is assumed to contain
//    the soma (parent). Therefore the sum of all the subtree complexities
//    is the same as the total complexity.
// for the first subtree: complexity, number of children, ids of children
// ...

iterator children() {local i   localobj p
	p = srlist.object($1)
	for i=0, p.nchild - 1  p.child[i] {
		$&2 = cm(.0001)
		iterator_statement
	}
}

func x2iseg() { local x
	if ($1 <= 0) { return -1 }
	if ($1 >= 1) { return $2 }
	return $1*$2 - .5	
}

// args: gid, cmax, result Vector
// return number of pieces
func multisplit() {local i, x, ilargest, cmax, c \
 localobj root, cc, xcon
	npiece = 1
	cbk_soma = 0
	cmax = $2
	$o3.resize(0)
	$o3.append($1)
	compute_roots()
if (0 && $1 == 79) {
printf("compute_roots\n")
for i=0, roots_complex_.size-1 {
printf("  %d %d %g %g\n", i, parent_vec_.x[i], sec_complex_.x[i], roots_complex_.x[i])
}
}
	$o3.append(roots_complex_.x[0])
	$o3.append(0) // update later if we do, in fact, split
	// maybe the cell is small enough that we do not have to split at all
	if (roots_complex_.x[0] < cmax) {
		return npiece
	}
	// cannot split if only one section
	if (roots_complex_.size < 2) {
		return npiece
	}
	// map from section to srlist index
	save_capac()
	root = srlist.object(0)
	for sections(&i) { cm(.0001) = i }

	// what is the pattern of connection at the soma
	// this helps us determine the best sid0 split point
	xcon = new Vector()
	root.sec for (x) xcon.append(x)
	cc = new Vector(xcon.size) // complexity of child trees
	for children(0, &i) {
		x = x2iseg(parent_connection(), root.sec.nseg) + 1
		c = roots_complex_.x[i]
		cc.x[x] += c
	}
	// First splitpoint is on the soma. That is a mistake if
	// the soma has only one branch...
	// The first split subtree contains the soma.
	// It must also contain the complexity of other branches
	// at different locations (if they are not also at a split point).
	// on the soma.
	// The soma cannot have more than two split points.
	// The first is the maximum cc.
	// The second is the next largest if it is larger than the
	// max.
	c = sec_complex_.x[0]
	cx_piece_indices = new Vector()
	bb_piece_cx = new Vector()
	
	if ((c + cc.sum - cc.max) < cmax) { // one split point at max point
		c += cc.sum - cc.max // everything except max subtree
		$o3.x[2] += 1
		ms_split($o3, 0, xcon.x[cc.max_ind], c, cmax)
	}else{ // two split points on soma
		i = cc.max_ind
		c += cc.sum - cc.max
		cc.x[i] = 0
		c -= cc.max // everything except max and next max subtree
		$o3.x[2] += 1
		ms_split($o3, 0, xcon.x[i], c, cmax)
		if (cc.max > 0) { //another split point on soma
			$o3.x[2] += 1
			ms_split($o3, 0, xcon.x[cc.max_ind], 0, cmax)
		}
	}
	// Note: if the root split point (contains the soma complexity) has
	// a child piece count of $o3.x[3] == 1, then that split point does
	// not have to be used.
	if ($o3.x[3] == 1) {
		$o3.x[4] -= cbk_soma
	}
	restore_capac()
	// the total complexity needs to be increased because of the extra
	// zero area nodes. It is also increased by multisplit
	// piece overhead and the someday perhaps the overhead of the reduced tree.
//$o3.x[0] = npiece + 1000*cx_piece_indices.size
	$o3.x[1] += m_complex_[0].x[0] * (cx_piece_indices.size - 1)
	for i = 1, cx_piece_indices.size-1 {
		$o3.x[cx_piece_indices.x[i]] += m_complex_[0].x[0]
	}
	$o3.x[1] += bb_piece_cx.sum
	for i=1, cx_piece_indices.size-1 {
		$o3.x[cx_piece_indices.x[i]] += bb_piece_cx.x[i]
	}
	return npiece - 1
}

// split at srlist.object($2).sec($3)
// $o1 is result vector to append
// $4 is extra complexity to be added to first subtree (for soma, otherwise 0)
// $5 is max complexity of a subtree
// return value is the total complexity of the subtree (includes complexity
//  of that portion which was recursively split away.)
func ms_split() {local i, j, cbk, ctotal, nsubtree_index, cx_index, nchild_index, c \
    localobj cx, is, sort
	cx = new Vector()  is = cx.c
	for children($2, &i) if ($3 == parent_connection()) {
		is.append(i)
		cx.append(roots_complex_.x[i])
	}
	if (cx.size == 0) {
srlist.object($2).sec printf("No children of %s(%g)\n", secname(), $3)
execerror("LoadBalance failure:")
	}
	sort = cx.c.sortindex
	is.index(sort)
	cx.index(sort)
	cx.x[0] += $4 // add to smallest
	ctotal = cx.sum

	nsubtree_index = $o1.size $o1.append(1) // number of subtrees
	cx_index = $o1.size $o1.append(cx.x[0]) // subtree complexity
	cx_piece_indices.append(cx_index)
	bb_piece_cx.append(0)
	nchild_index = $o1.size $o1.append(1) // number of children in subtree
	$o1.append(is.x[0])
	for i=1, is.size-1 {
		if ($o1.x[cx_index] + cx.x[i] < $5) {
			$o1.x[cx_index] += cx.x[i]
			$o1.x[nchild_index] += 1
		}else{
			$o1.x[nsubtree_index] += 1
			cx_index = $o1.size $o1.append(cx.x[i])
			nchild_index = $o1.size $o1.append(1)
		}
		$o1.append(is.x[i])
	}
	// some of the individuals may be large and need to be split themselves
	// so the complexity added above may need to be updated
	cx_index = nsubtree_index + 1
	for i = 0, $o1.x[nsubtree_index] - 1 {
		if ($o1.x[cx_index] > $5) { // needs splitting
    if (cansplit(srlist, $o1, cx_index+2)) {
//    if (srlist.object($o1.x[cx_index+2]).nchild > 0 ) {
			j = ms_getsplit($o1.x[cx_index+2], $5)
			$o1.x[2] += 1
			c = ms_split($o1, j, 1, 0, $5)
			$o1.x[cx_index] -= c
			// but now this subtree has a backbone so there
			// is extra complexity proportional to the number
			// of segments on the backbone. Count from (j,1) to
			// ($2,$3)
			if (backbone_cx_) {
				cbk = backbone_cx_ * cnt_bb_seg($2, $3, j, 1)
				if ($2 == 0) {
					// in case we do not in fact split
					// cbk_soma = cbk
				}
		bb_piece_cx.x[cx_piece_indices.indwhere("==", cx_index)] += cbk
			}
    }else{
//	printf("Piece %d with complexity %g cannot be split\n", cx_index, $o1.x[cx_index])
    }
		}
		if (i < $o1.x[nsubtree_index] - 1) {
			cx_index += 2 + $o1.x[cx_index + 1]
			cx_piece_indices.append(cx_index)
			bb_piece_cx.append(0)
		}
	}
	npiece += $o1.x[nsubtree_index]
	
	return ctotal
}

//    if (cansplit(srlist, $o1, cx_index+2)) { replaces
//    if (srlist.object($o1.x[cx_index+2]).nchild > 0 ) {
func cansplit() {local i, b, x  localobj sr
	sr = $o1.o($o2.x[$3])
//	sr.sec print "cansplit ", secname(), " ", $3
	if (sr.nchild == 0) { return 0 }
	b = 0
	for i=0, sr.nchild -1 sr.child[i] {
		x = parent_connection()
		if (x == 0 || x == 1) {
			b = 1
		}
	}
	return b
}

func cnt_bb_seg() {local i, j, ns, xp
	ns = 0
	// all segs until reach the first section
	for (i = $3; i != $1; i = j) {
		srlist.object(i).sec {
			ns += nseg + 1 // include the 0 area node
			xp = parent_connection()
		}
		srlist.object(i).parent {
			j = cm(.0001)
		}
	}
	// only the segs in first section from $2 to ...
	srlist.object($1).sec { j = (nseg*abs($2-xp)) + 1 }
	ns += j
//	srlist.object($3).sec printf("%d segments from %s(%g) to ", ns, secname(), $4)
//	srlist.object($1).sec printf("%s(%g)\n", secname(), $2)
	return ns
}

// return a split parent index descending from srlist.object($1)
// so the backbone is < $2
// The only problem is that one or more of the children at the
// split point should be allowed to be part of the parent backbone

func ms_getsplit() {local i, id, idold, c, ctotal, clargest, ilargest
	id = $1
	idold = $1
	ctotal = roots_complex_.x[id]
	c = ctotal
	while (ctotal - c < $2 && c > $2) {
		c = 0
		clargest = 0
		for children(id, &i) {
			c += roots_complex_.x[i]	
			if (roots_complex_.x[i] > clargest) {
				clargest = roots_complex_.x[i]
				ilargest = i
			}
		}
		if (ctotal - c > $2) { break }
		idold = id
		id = ilargest
	}
	return idold
}

endtemplate LoadBalance