/usr/share/nrn/lib/hoc/loadbal.hoc is in neuron 7.5-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 | {load_file("stdgui.hoc")}
// utility to help compute computational complexity of a cell
// and determine best split locations
begintemplate LoadBalance
public cell_complexity, subtree_complexity, secref, resolutions
public ExperimentalMechComplex, distrib, multisplit, read_load_balance_info, cpu_complexity
public sec_complex_, roots_complex_, cell_complexity_, m_complex_, ion_complex_, cplx
public srlist, backbone_cx_, mt, compute_roots, parent_vec_
public host, gid, splitx, spliti, splitb, unsplitx, splitbit, read_mcomplex
public thread_partition, slthread, thread_cxbal_, npiece_, pieces_cx, lpt
external hoc_obj_, hoc_sf_, cvode
objref srlist, sec_complex_, roots_complex_, parent_vec_, save_capac_
objref mt[2], m_complex_[2], cplx, this, pc, ion_complex_
objref slthread[1]
objref cx_piece_indices, bb_piece_cx
strdef mname
// temporaries for distrib
objref cvec, splitxlist, splitixlist, cpu, splitcplx, splitindex, allocated, sorted, sp, si
objref splitbrlist, splitbres, sb
objref gid, splitx, spliti, splitb, host
objref unsplitx
proc init() {local i, j localobj ms
if (numarg() == 0) {
pc = new ParallelContext()
}else{
pc = $o1
}
backbone_cx_ = .6 // extra complexity due to backbone segments
thread_cxbal_ = 1.0
splitbit = 2^28
sec_complex_ = new Vector()
roots_complex_ = new Vector()
parent_vec_ = new Vector()
for j=0, 1 {
mt[j] = new MechanismType(j)
m_complex_[j] = new Vector(mt[j].count)
if (j == 0) {ion_complex_ = new Vector(mt[0].count)}
for i=0, mt[j].count-1 {
if (j == 1) if(mt[j].is_artificial(i) == 1) continue
mt[j].select(i)
mt[j].selected(mname)
ms = new MechanismStandard(mname, 3)
m_complex_[j].x[i] = 1 + ms.count
// printf("complexity %d for %s\n", m_complex_[j].x[i], mname)
if (j == 0 && hoc_sf_.substr(mname, "_ion") != -1) {
m_complex_[j].x[i] = 0
ion_complex_.x[i] = 1
}
}
}
}
iterator sections() {local i
for i=0, srlist.count-1 srlist.object(i).sec {
$&1 = i
iterator_statement
}
}
// least processing time algorithm
// $o1 is vector of weights $2 is number of partitions
// return is vector of partition indices parallel to weights
obfunc lpt() {local i, j localobj wx, ix, pw
if ($3) {
print $o1.size, " piece weights"
$o1.printf
}
wx = $o1.sortindex.reverse
ix = new Vector($o1.size)
pw = new Vector($2)
for i=0, $o1.size-1 {
j = wx.x[i]
w = $o1.x[j]
ip = pw.min_ind
pw.x[ip] += w
ix.x[j] = ip
}
if ($3) {
print $2, " partition complexities"
pw.printf
}
if (pw.mean) {
thread_cxbal_ = pw.max/(pw.mean)
}else{
thread_cxbal_ = 1
}
return ix
}
// piece complexities can only be called after srlist exists
obfunc pieces_cx() {local i localobj cx, srl, sr, roots
cx = new Vector()
roots = new List()
srl = srlist
for i = 0, srl.count-1 {
sr = srl.object(i)
if (!sr.has_parent) sr.sec {
roots.append(sr)
cx.append(cell_complexity())
}
}
if (numarg() == 1) { $o1 = roots }
return cx
}
// lpt distribution of pieces on all the threads
proc thread_partition() { local i localobj roots, cx, tid
cx = pieces_cx(roots)
npiece_ = roots.count()
// if (pc.nthread == 1) { return } // do not bother
tid = lpt(cx, pc.nthread, $1)
objref slthread[pc.nthread]
for i=0, pc.nthread - 1 {
slthread[i] = new SectionList()
}
for i=0, tid.size-1 {
roots.object(i).sec slthread[tid.x[i]].append()
}
for i=0, pc.nthread - 1 {
pc.partition(i, slthread[i])
}
}
func is_nernst() {
return int(ion_style($s1)/64)%2
}
// complexity of currently accessed section
func sec_complexity() {local c, i, x localobj pp
c = m_complex_[0].x[0] // one zero area node
for i=1, mt[0].count-1 {
mt[0].select(i)
mt[0].selected(mname)
if (ismembrane(mname)) {
x = m_complex_[0].x[i]
if (ion_complex_.x[i] > 0) if (is_nernst(mname)) {
x = ion_complex_.x[i]
}
c += x * nseg
}
}
for i=0, mt[1].count-1 {
mt[1].select(i)
for (pp = mt[1].pp_begin; object_id(pp); pp = mt[1].pp_next) {
c += m_complex_[1].x[i]
}
}
return c
}
// complexity of entire cell containing currently accessed section
// or, if there is an arg, the complexity of the cell object.
// keep the individual section complexities in a parallel vector
// for split analysis
func cell_complexity() {local x, i, c localobj sl, sr
sl = new SectionList()
if (numarg() == 1) {
if (!execute1("{all}", $o1, 0)) {
srlist = new List()
sec_complex_.resize(0)
return 0
}
forsec $o1.all {
if (object_id(sr) == 0) {
sr = new SectionRef()
}
}
sr.sec { sl.wholetree() }
}else{
sl.wholetree() // note this is root to leaf order
}
return cplx_helper(sl) + m_complex_[0].x[0]
}
func cpu_complexity() { local n localobj s, sl
s = new String()
srlist = new SectionList()
srlist.allroots()
n = 0 forsec srlist { n += 1 }
sl = new SectionList()
forsec srlist { sl.wholetree() }
return cplx_helper(sl) + n * m_complex_[0].x[0]
}
func cplx_helper() {local x, i, c localobj sl
sl = $o1
srlist = new List()
forsec sl { srlist.append(new SectionRef()) }
sec_complex_.resize(srlist.count)
c = 0
for sections(&i) {
x = sec_complexity()
sec_complex_.x[i] = x
c += x
}
cell_complexity_ = c
return c
}
proc compute_roots() {local i
// construct a trueparent index vector
save_capac()
for sections(&i) { cm(.0001) = i }
parent_vec_.resize(srlist.count)
for i=0, srlist.count-1 {
if (srlist.object(i).has_trueparent) {
srlist.object(i).trueparent {parent_vec_.x[i] = cm(.0001)}
}else if (srlist.object(i).has_parent) {
srlist.object(i).parent {parent_vec_.x[i] = cm(.0001)}
}else{
parent_vec_.x[i] = -1
}
}
restore_capac()
// accumulate the subtree complexities
roots_complex_.copy(sec_complex_)
for (i = srlist.count-1; i > 0; i -= 1) {
if (parent_vec_.x[i] >= 0) {
roots_complex_.x[parent_vec_.x[i]] += roots_complex_.x[i]
}
}
}
// returns the index of the complexity that is closest to the desired
// complexity (argument 1) but less than
// or equal to the upper bound complexity (argument 2)
// Note if scalar reference arg3 returns as 0 then the subtree
// rooted at that section index is the one referred to. If 1, then
// subtree rerooted at the parent is the on referred to.
func subtree_complexity() {local i, j, k, min
compute_roots()
min = 1e9
for i = 0, srlist.count-1 {
c = roots_complex_.x[i]
if (c < $2 && abs(c - $1) < min) {
j = i k = 0 min = abs(c - $1)
}
c = cell_complexity_ - c
if (c < $2 && abs(c - $1) < min) {
j = i k = 1 min = abs(c - $1)
}
}
$&3 = k
return j
}
//returns the SectionRef of the section associated with index (arg1)
obfunc secref() {
return srlist.object($1)
}
//returns a vector with the distinct possible resolutions
//the indices of these resolutions are returned as a new parallel vector in $o1
// and the branch set index as a vector in $o2.
// note that at a branch point where n sections connect together
// with m different complexities,
// there are n!/(n - m)! - 1 potentially distinct complexity resolutions.
// For complicated trees, e.g. 3d reconstructions, most often n = 3 and
// so there are generally 5 resolutions available. The TCR Traub
// cell has 10 subtrees each of weight 418 connected to a soma/axon
// subtree of weight 4306 - 10*418 = 126 so there would be
// 11*10 - 1 possible resolutions at the 1 end of the soma.
obfunc resolutions() {local i, j, ibegin, pbegin, c, oldres \
localobj si, res, v1, v2, bres, corder
compute_roots()
v1 = new Vector()
v2 = new Vector()
res = new Vector()
bres = new Vector()
corder = new Vector()
if (srlist.count == 0) {
$o1 = v2
$o2 = bres
return v1
}
si = parent_vec_.sortindex
ibegin = 0
pbegin = parent_vec_.x[si.x[ibegin]]
for i=0, si.size-1 {
if (parent_vec_.x[si.x[i]] == pbegin) {continue}
if (parent_vec_.x[si.x[ibegin]] >= 0) { // do not allow split at root
n = i - ibegin
res.resize(n)
corder.resize(n)
// child resolutions of the pbegin index
for j=0, n-1 {
res.x[j] = roots_complex_.x[si.x[j + ibegin]]
corder.x[j] = si.x[j + ibegin]
}
// want the res to be in child order
corder = corder.sortindex
res.index(res, corder)
// the parent tree is implicit with respect to the
// remainder
// for simplicity, instead of analyzing all the
// possiblities, just do all individual and the sums
// (and, of course, the remainders). Associate every
// resolution with ibegin and a index for the
// specific branch set. Note that this gets all of
// the binary branch combinations and is good
// for stylized multibranches where all are identical
// individuals
c = cell_complexity_
for j=0, n-1 {
v1.append(res.x[j])
v1.append(c - res.x[j])
v2.append(si.x[ibegin])
v2.append(si.x[ibegin])
bres.append(j+1)
bres.append(-(j+1))
}
// sums
oldres = res.x[0]
for j=1, n-1 {
oldres += res.x[j]
if (oldres < c) {
v1.append(oldres)
v1.append(c - oldres)
v2.append(si.x[ibegin])
v2.append(si.x[ibegin])
bres.append(n+j)
bres.append(-(n+j))
}
}
}
ibegin = i
pbegin = parent_vec_.x[si.x[ibegin]]
}
// now only the distinct ones
si = v1.sortindex
v1.index(v1, si)
v2.index(v2, si)
bres.index(bres, si)
for (i=v1.size-1; i >= 1; i -= 1) {
if (v1.x[i] == v1.x[i-1]) {
v1.remove(i)
v2.remove(i)
bres.remove(i)
}
}
$o1 = v2
$o2 = bres
return v1
}
proc save_capac() {local i
save_capac_ = new Vector(sec_complex_.size)
for sections(&i) {
save_capac_.x[i] = cm(.0001)
}
}
proc restore_capac() {local i
for sections(&i) {
cm(.0001) = save_capac_.x[i]
}
}
// all the mechanism type 0 then 1, then base and ion with style eadvance (64 bit set)
// generate a vector of computation time and a list of type vectors of types inserted
proc setcol() {local i
for i=0, $o1.nrow-1 {
$o1.x[i][$2] = $3
}
}
proc ExperimentalMechComplex() {local i, j, k, b, ts, ns, baseindex, irun, par \
localobj s, cmd, sr, ionindices, ct, names, ninstance, pc, ionname, f, dvec, vcnts, dvec1
//if something uses a mechanism of type i then if ionindices.x[i] > 0 then
// the mechanism is an ion and if the eadvance bit is set for the ionstyle
// then the index for the element is ionindices.x[i]
pc = new ParallelContext()
par = 0 if (pc.nhost > 1) { par = 1 dvec = new Vector() }
//printf("id=%d nhost=%d\n", pc.id, pc.nhost)
baseindex = mt[0].count + mt[1].count
j = baseindex + 1
ionindices = new Vector(mt[0].count)
s = new String()
ionname = new String()
for i=0, mt[0].count-1 {
mt[0].select(i)
mt[0].selected(s.s)
if (hoc_sf_.substr(s.s, "_ion") != -1) {
ionindices.x[i] = j
j += 1
}
}
// start empty
forall delete_section()
// do three runs for each mechanism
ct = new Matrix(j, 3)
names = new List()
for i=0, ct.nrow-1 {
names.append(new String())
}
ninstance = new Matrix(j, j, 2)
// fixed step with cache efficiency
cvode.active(0)
cvode.cache_efficient(1)
cmd = new String()
ts = 100
ns = 100
for irun=0, ct.ncol-1 {
ct.x[baseindex][irun] = dorun(ts)
}
// setcol(ninstance,baseindex,1) // everyone has the overhead
names.o(baseindex).s = "overhead"
// morphology and capacitance go together by default. But treat 0 and 1
// as 100 empty sections with one segment and 1 empty section with 100
// segments respectively
sr = makesec(ns, 1)
for irun=0, ct.ncol-1 {
ct.x[0][irun] = dorun(ts)
}
// setcol(ninstance, 0, 2) // everyone has 2 zero area nodes except
// ninstance.x[0][0] = 1 + ns // this one is sausage of ns sections
// ninstance.x[baseindex][0] = 0 // overhead has none
names.o(0).s = "zero_area_node"
sr = makesec(1, ns)
for irun=0, ct.ncol-1 {
ct.x[1][irun] = dorun(ts)
}
// setcol(ninstance, 1, ns) // everyone has capacitance
names.o(1).s = "capacitance"
// from now on 1 section ns segments
for j=0, 1 for k = 0, mt[j].count-1 {
if (j == 0 && k < 2) { continue }
kk = k + j*mt[0].count
mt[j].select(k)
mt[j].selected(s.s)
names.o(kk).s = s.s
// parallelism added on top of working version
b = 1
if (kk%pc.nhost != pc.id) {
b = 0
}
// ions must be done on id 0 (because names for
// ionindices.x[k] needs to be assigned )
if (j == 0) if (ionindices.x[k] > 0) {
if (pc.id == 0) {
b = 1
}else{
b = 0
}
}
if (b == 0) {
continue
}
//printf("%d %s\n", pc.id, s.s)
sr = makesec(1, ns)
b = 0
for i=1, numarg() {
if (hoc_sf_.substr(s.s, $si) != -1) { b = 1 }
}
if (b) { continue }
if (j == 0) {
sprint(cmd.s, "insert %s", s.s)
}else{
if (mt[j].is_artificial(k)) { continue }
hoc_obj_ = new List(ns)
sprint(cmd.s, "for (hoc_ac_, 0) hoc_obj_.append(new %s(hoc_ac_))", s.s)
}
sr.sec execute(cmd.s)
if (dorun(1) == 1000) {
printf("mcomplex failed for %s\n", s.s)
continue
}
if (par) { dvec.append(kk) }
for irun=0, ct.ncol-1 {
ct.x[kk][irun] = dorun(ts)
if (par) { dvec.append(ct.x[kk][irun]) }
}
// ninstance.x[kk][kk] = ns
// if it is an ion, do again with style eadvance
b = 0
if (j == 0) if (ionindices.x[k] > 0) { b = 1 }
if (b) {
ion_style(s.s, 3, 2, 1, 1, 0)
for irun=0, ct.ncol-1 {
ct.x[ionindices.x[k]][irun] = dorun(ts)
}
ninstance.x[ionindices.x[k]][ionindices.x[k]] = ns
names.o(ionindices.x[k]).s = s.s
}else{ // otherwise, what ions are used with what style
for i=2, ionindices.size-1 if (ionindices.x[i] > 0) {
mt[0].select(i)
mt[0].selected(ionname.s)
sr.sec if (ismembrane(ionname.s)) {
if (int(ion_style(ionname.s)/64)%2) {
//eadvance is 1
ninstance.x[kk][ionindices.x[i]] = ns
}else{
ninstance.x[kk][i] = ns
}
}
}
}
}
execute("objref hoc_obj_[2]")
if (object_id(sr)) sr.sec delete_section()
if (par) {// now do an alltoall so id 0 has all the info
vcnts = new Vector(pc.nhost)
if (pc.id == 0) {dvec.resize(0)}
vcnts.x[0] = dvec.size
dvec1 = new Vector()
pc.alltoall(dvec, vcnts, dvec1)
for (i=0; i < dvec1.size; i += ct.ncol+1) {
kk = dvec1.x[i]
for irun=0, ct.ncol-1 {
ct.x[kk][irun] = dvec1.x[i+irun+1]
}
}
if (pc.id > 0) { // the id==0 barrier is at the end
pc.barrier()
return
}
}
// lastly, get some indication of time it takes to solve a backbone
if (0) {
pc.gid_clear()
sr.sec delete_section()
sr = makesec(ns)
sr.sec {
pc.multisplit(0, 1, 2)
pc.multisplit(1, 2, 2)
}
pc.multisplit()
cx = (dorun(ts)-base)/base
if (cx < 0) { cx = 0 }
printf("backbone %g\n", cx)
pc.gid_clear()
sr.sec delete_section()
}
// subtract the overhead
f = ct.getrow(baseindex)
for i=0, ct.nrow-1 if (i != baseindex) {
ct.setrow(i, ct.getrow(i).sub(f))
}
// the capacitance contains the zero area node contribution. subtract from mech
f = ct.getrow(1)
for i=2, ct.nrow-1 if (i != baseindex) {
ct.setrow(i, ct.getrow(i).sub(f))
}
// separate the zero-area_node and the capacitance
ct.setrow(0, ct.getrow(0).sub(ct.getrow(1)).div(ns-1)) // single zero-area-node
ct.setrow(1, ct.getrow(1).sub(ct.getrow(0).mul(2)).div(ns)) // single capacitance after subtract two zero nodes
// subtract ions from mechanisms
for i=2, baseindex-1 {
for k = 0, ninstance.sprowlen(i)-1 {
ninstance.spgetrowval(i, k, &j)
ct.setrow(i, ct.getrow(i).sub(ct.getrow(j)))
}
}
// unit values
for i=2, ct.nrow-1 if (i != baseindex) {
ct.setrow(i, ct.getrow(i).div(ns))
}
f = new File()
f.wopen("mcomplex.dat")
// scale to capacitance
j = ct.getrow(1).mean
for i=0, ct.nrow-1 {
// take average. negative is artificial and undone
k = ct.getrow(i).mean
if (k < 0) { k = 0 }
f.printf("%g %s\n", k/j, names.o(i).s)
}
f.close()
if (par) { pc.barrier() }
}
proc read_mcomplex() {local i, j, k, c localobj f, s, s2, pc
pc = new ParallelContext()
f = new File()
if (!f.ropen("mcomplex.dat")) { return }
s = new String()
s2 = new String()
for j=0,1 {
k = 0
for i=0, mt[j].count - 1 {
c = f.scanvar()
f.scanstr(s2.s)
mt[j].select(i)
mt[j].selected(s.s)
if (pc.id == 0) if (j == 0 && k == 0) {
if (strcmp("zero_area_node", s2.s) != 0) { execerror(s2.s, " should be zero_area_node") }
}else{
if (strcmp(s.s, s2.s) != 0) { execerror(s2.s, " not loaded") }
}
m_complex_[j].x[k] = c
k += 1
}
}
c = f.scanvar() f.scanstr(s2.s)
if (strcmp(s2.s, "overhead") != 0) { execerror(s2.s, "should be overhead")}
while (f.gets(s.s) != -1) if (hoc_sf_.substr(s.s, "_ion") != -1) {
sscanf(s.s, "%lf %s", &c, s2.s)
mt[0].select(s2.s)
ion_complex_.x[mt[0].selected()] = c
}
if (0) {
for i=0, mt[0].count-1 {
printf("%g %g\n", m_complex_[0].x[i], ion_complex_.x[i])
}
for i=0, mt[1].count-1 {
printf("%g\n", m_complex_[1].x[i])
}
}
}
func dorun() {
xrun_ = $1
if (execute1("xrun()", this) == 0) { return 1000 }
return xrun_
}
proc xrun() {local tstop localobj pc
tstop = xrun_
pc = new ParallelContext()
finitialize(-70)
xrun_ = pc.time
batch_run(tstop, tstop)
xrun_ = pc.time - xrun_
}
obfunc makesec() {localobj s, sr
s = new String()
sprint(s.s, "create tempsec[%d]", $1)
execute(s.s)
sprint(s.s, "forall nseg=%d", $2)
execute(s.s)
sprint(s.s, "for i=1, %d { connect tempsec[i](0), tempsec[i-1](1) }", $1-1)
execute(s.s)
sprint(s.s, "tempsec[0] hoc_obj_[1] = new SectionRef()")
execute(s.s)
sr = hoc_obj_[1]
cvode.use_mxb(0) // extracellular would turn this on
cvode.cache_efficient(1) // extracellular would turn this off
return sr
}
//args
//input $1=#ncpu, $o2=Vector of complexity values, $o3=List of Vectors of split point complexities
// $o4=List of Vectors of split point indices
// $o8 = List of Vectors of split point branch set indices
//output (parallel to $o2) $o5 = Vector of cpu indices, $o6 = Vector of split point complexity
// $o7 = Vector of split point indices
// $o9 = Vector of split point branch set indices
// if a return split point complexity is -1 then means it was not split
// return % load balance error
func distrib() {local i, n
$o5.resize($o2.size)
$o6.resize($o2.size)
$o7.resize($o2.size)
$o9.resize($o2.size)
cplx = new Vector()
for i = 0, 50 {
cvec = $o2
splitxlist = $o3
splitixlist = $o4
cpu = $o5
splitcplx = $o6
splitindex = $o7
splitbrlist = $o8
splitbres = $o9
n = distrib_trial($1, i+.5)
//printf("i=%d n=%d\n", i, n)
if (n <= $1) { break }
}
//print "distrib returning with i=",i
return int((cplx.max*$1/$o2.sum - 1)*100 + .5)
}
func distrib_trial() {local i, i1, j1, j2, j, k, c, cmax, cmin, climit, n, ncpu, margin
ncpu = $1
margin = (1 + $2/100)
splitcplx.fill(-1)
splitindex.fill(0)
splitbres.fill(0)
allocated = new Vector(cvec.size)
sorted = cvec.sortindex
cplx.resize(0)
i = 0
j = sorted.size - 1
n = 0
c = 0
climit = cvec.sum/ncpu
//printf("climit = %g climit*margin = %g\n", climit, climit*margin)
while (i <= j) {
i1 = sorted.x[i] // smallest
j1 = sorted.x[j] // largest
if (allocated.x[i1]) { i += 1 continue }
if (allocated.x[j1]) { j -= 1 continue }
cmax = cvec.x[j1]
cmin = cvec.x[i1]
if (c + cmax <= climit*margin) { // largest whole cell fits into cpu
cpu.x[j1] = n // hopefully the most common case
//printf("largest fits j=%d j1=%d cold=%d cmax=%d cnew=%d n=%d\n", j, j1, c, cmax, c+cmax, n)
c += cmax
allocated.x[j1] = 1
}else{ // if (cmax > climit) { // must split
if (c + cmax > 2*climit) { // may want to defer til c==0
if (c == 0) { // no choice but to split as evenly as possible
// and put the largest part first
cpu.x[j1] = n
allocated.x[j1] = 1
sp = splitxlist.object(j1)
si = splitixlist.object(j1)
sb = splitbrlist.object(j1)
k = sp.indwhere(">=", cmax/2)
splitcplx.x[j1] = sp.x[k]
splitindex.x[j1] = si.x[k]
splitbres.x[j1] = sb.x[k]
c += sp.x[k]
//printf("no choice even split j=%d j1=%d c=%d cmax=%d othersplit=%d", j, j1, c, cmax, cmax-c, n)
n = addone(n, ncpu, c)
c = cmax - c
if (c > climit) {
// satisfied if n is full
n = addone(n, ncpu, c)
c = 0
}else if ( greedy(i, j, c, climit, margin, &j2, &k) ) {
// see if there is a cell available which will fill this
// and the next cpu to within the margin.
cpu.x[j2] = n
allocated.x[j2] = 1
sp = splitxlist.object(j2)
si = splitixlist.object(j2)
sb = splitbrlist.object(j2)
splitcplx.x[j2] = sp.x[k]
splitindex.x[j2] = si.x[k]
splitbres.x[j2] = sb.x[k]
c += sp.x[k]
n = addone(n, ncpu, c)
c = cvec.x[j2] - sp.x[k]
n = addone(n, ncpu, c)
c = 0
}else{
// not clear what to do.
// attempt to fill more?
// probably pretty close to full
//printf("fail %d %d\n", n, c)
n = addone(n, ncpu, c)
c = 0
}
}else if ( greedy(i, j, c, climit, margin, &j2, &k) ) {
// see if there is a cell available which will fill this
// and the next cpu to within the margin.
cpu.x[j2] = n
allocated.x[j2] = 1
sp = splitxlist.object(j2)
si = splitixlist.object(j2)
sb = splitbrlist.object(j2)
splitcplx.x[j2] = sp.x[k]
splitindex.x[j2] = si.x[k]
splitbres.x[j2] = sb.x[k]
c += sp.x[k]
n = addone(n, ncpu, c)
c = cvec.x[j2] - sp.x[k]
n = addone(n, ncpu, c)
c = 0
}else{
//printf("leave as is, use next cpu c=%d n=%d\n", c, n)
n = addone(n, ncpu, c)
c = 0
}
}else{ //safe to split
// fill up n
cpu.x[j1] = n
sp = splitxlist.object(j1)
si = splitixlist.object(j1)
sb = splitbrlist.object(j1)
k = sp.indwhere(">=", climit - c)
if (k == -1) k = sp.size-1
if (k > 1 && c + sp.x[k] > climit*margin) k -= 1
if (c + sp.x[k] > climit*margin) {
//printf("leave as is, use next cpu c=%d n=%d\n", c, n)
n = addone(n, ncpu, c)
c = 0
continue
}
allocated.x[j1] = 1
// should check if k-1 is better split point
splitcplx.x[j1] = sp.x[k]
splitindex.x[j1] = si.x[k]
splitbres.x[j1] = sb.x[k]
//printf("safe split j=%d j1=%d cold=%d cmax=%d sp=%d cnew=%d remain=%d n=%d k=%d\n",\
//j, j1, c, cmax, sp.x[k], c+sp.x[k], cmax-sp.x[k], n, k)
c += sp.x[k]
n = addone(n, ncpu, c)
c = cmax - sp.x[k]
}
}
}
if (c > 0) {
cplx.append(c)
}
objref cvec, splitxlist, splitixlist, cpu, splitcplx, splitindex, allocated, sorted, sp, si
objref splitbrlist, splitbres, sb
//printf("trial %d ncpu=%d max=%g avg=%g min=%g %d\n", $2, cplx.size, cplx.max, cplx.mean, cplx.min, cplx.min_ind)
return cplx.size
}
//greedy(i, j, c, climit, margin, &j2, &k)
func greedy() {local i, i1, k, c, climit, margin, rest, remain, max, min \
localobj sp
c = $3
climit = $4
margin = $5
rest = climit*margin
remain = rest - c
max = rest + remain
min = 2*climit - c
for i = $1, $2 {
i1 = sorted.x[i]
if (allocated.x[i1]) { continue }
if (max < cvec.x[i1]) { continue }
if (min > cvec.x[i1]) { continue }
sp = splitxlist.object(i1)
k = sp.indwhere(">=", climit - c)
if ( sp.x[k] <= remain && cvec.x[i1] - sp.x[k] <= rest) {
$&6 = i1
$&7 = k
return 1
}
}
return 0
}
func addone() {local n
cplx.append($3)
n = $1 + 1
if (n >= $2) {
// printf("Warning, increasing the cpu index past %d\n", $2)
}
return n
}
proc read_load_balance_info() {local i, n, h, g, si, sx, sb, cx, myid localobj f
myid = $2
f = new File()
if (!f.ropen($s1)) {
execerror("could not open", $s1)
}
n = f.scanvar()
host = new Vector()
gid = new Vector()
splitx = new Vector()
spliti = new Vector()
splitb = new Vector()
unsplitx = new Vector()
for i=0, n-1 {
h = f.scanvar()
g = f.scanvar()
si = f.scanvar()
sb = f.scanvar()
sx = f.scanvar()
cx = f.scanvar()
if (h == myid) {
host.append(h)
gid.append(g)
spliti.append(si)
splitb.append(sb)
splitx.append(sx)
unsplitx.append(cx)
}else if (h == (myid - 1) && sx > -1) {
host.append(h)
gid.append(g)
spliti.append(si)
splitb.append(sb)
splitx.append(sx)
unsplitx.append(cx)
}
}
f.close()
}
// here we split a cell at the soma and at one other point (to form
// a short backbone) so that the maximum size piece is as small as
// possible. Return the index of the section which we will split
// at the 1 end.
// enhanced to try to split consistent with the optional second arg value for
// maximum complexity
// 12/24/2006 try again. several issues were revealed in the experience
// with the first implementation. Need to divide into possibly many pieces,
// not just 3 and each piece has to be < some max complexity.
// Do not worry about adjacent backbone sizes since we plan on enhancing
// ParallelContext.multisplit to solve exactly anyway. Sometimes branches
// are at several locations on soma. Generally the user will coalesce these
// and the problem will go away. But if not...
// Usually choose a split point at the
// largest branch, but the collection of (smaller) branches at the other point
// may total > cmax. If the collections of branches at both points that do
// not include our largest branch is still > cmax then we are forced to
// have two split points in the soma.
// With respect to returning a result, originally we used a String but that
// is getting out of hand so switch to Vector with a suitable format where
// the information is not too difficult to extract for use by mssel, msdiv,
// and pmetis. Format is
// gid
// total complexity
// how many split points, may be 0 if cell is not split
// for the first split point, the number of subtrees
// Note, the first subtree of the first split point is assumed to contain
// the soma (parent). Therefore the sum of all the subtree complexities
// is the same as the total complexity.
// for the first subtree: complexity, number of children, ids of children
// ...
iterator children() {local i localobj p
p = srlist.object($1)
for i=0, p.nchild - 1 p.child[i] {
$&2 = cm(.0001)
iterator_statement
}
}
func x2iseg() { local x
if ($1 <= 0) { return -1 }
if ($1 >= 1) { return $2 }
return $1*$2 - .5
}
// args: gid, cmax, result Vector
// return number of pieces
func multisplit() {local i, x, ilargest, cmax, c \
localobj root, cc, xcon
npiece = 1
cbk_soma = 0
cmax = $2
$o3.resize(0)
$o3.append($1)
compute_roots()
if (0 && $1 == 79) {
printf("compute_roots\n")
for i=0, roots_complex_.size-1 {
printf(" %d %d %g %g\n", i, parent_vec_.x[i], sec_complex_.x[i], roots_complex_.x[i])
}
}
$o3.append(roots_complex_.x[0])
$o3.append(0) // update later if we do, in fact, split
// maybe the cell is small enough that we do not have to split at all
if (roots_complex_.x[0] < cmax) {
return npiece
}
// cannot split if only one section
if (roots_complex_.size < 2) {
return npiece
}
// map from section to srlist index
save_capac()
root = srlist.object(0)
for sections(&i) { cm(.0001) = i }
// what is the pattern of connection at the soma
// this helps us determine the best sid0 split point
xcon = new Vector()
root.sec for (x) xcon.append(x)
cc = new Vector(xcon.size) // complexity of child trees
for children(0, &i) {
x = x2iseg(parent_connection(), root.sec.nseg) + 1
c = roots_complex_.x[i]
cc.x[x] += c
}
// First splitpoint is on the soma. That is a mistake if
// the soma has only one branch...
// The first split subtree contains the soma.
// It must also contain the complexity of other branches
// at different locations (if they are not also at a split point).
// on the soma.
// The soma cannot have more than two split points.
// The first is the maximum cc.
// The second is the next largest if it is larger than the
// max.
c = sec_complex_.x[0]
cx_piece_indices = new Vector()
bb_piece_cx = new Vector()
if ((c + cc.sum - cc.max) < cmax) { // one split point at max point
c += cc.sum - cc.max // everything except max subtree
$o3.x[2] += 1
ms_split($o3, 0, xcon.x[cc.max_ind], c, cmax)
}else{ // two split points on soma
i = cc.max_ind
c += cc.sum - cc.max
cc.x[i] = 0
c -= cc.max // everything except max and next max subtree
$o3.x[2] += 1
ms_split($o3, 0, xcon.x[i], c, cmax)
if (cc.max > 0) { //another split point on soma
$o3.x[2] += 1
ms_split($o3, 0, xcon.x[cc.max_ind], 0, cmax)
}
}
// Note: if the root split point (contains the soma complexity) has
// a child piece count of $o3.x[3] == 1, then that split point does
// not have to be used.
if ($o3.x[3] == 1) {
$o3.x[4] -= cbk_soma
}
restore_capac()
// the total complexity needs to be increased because of the extra
// zero area nodes. It is also increased by multisplit
// piece overhead and the someday perhaps the overhead of the reduced tree.
//$o3.x[0] = npiece + 1000*cx_piece_indices.size
$o3.x[1] += m_complex_[0].x[0] * (cx_piece_indices.size - 1)
for i = 1, cx_piece_indices.size-1 {
$o3.x[cx_piece_indices.x[i]] += m_complex_[0].x[0]
}
$o3.x[1] += bb_piece_cx.sum
for i=1, cx_piece_indices.size-1 {
$o3.x[cx_piece_indices.x[i]] += bb_piece_cx.x[i]
}
return npiece - 1
}
// split at srlist.object($2).sec($3)
// $o1 is result vector to append
// $4 is extra complexity to be added to first subtree (for soma, otherwise 0)
// $5 is max complexity of a subtree
// return value is the total complexity of the subtree (includes complexity
// of that portion which was recursively split away.)
func ms_split() {local i, j, cbk, ctotal, nsubtree_index, cx_index, nchild_index, c \
localobj cx, is, sort
cx = new Vector() is = cx.c
for children($2, &i) if ($3 == parent_connection()) {
is.append(i)
cx.append(roots_complex_.x[i])
}
if (cx.size == 0) {
srlist.object($2).sec printf("No children of %s(%g)\n", secname(), $3)
execerror("LoadBalance failure:")
}
sort = cx.c.sortindex
is.index(sort)
cx.index(sort)
cx.x[0] += $4 // add to smallest
ctotal = cx.sum
nsubtree_index = $o1.size $o1.append(1) // number of subtrees
cx_index = $o1.size $o1.append(cx.x[0]) // subtree complexity
cx_piece_indices.append(cx_index)
bb_piece_cx.append(0)
nchild_index = $o1.size $o1.append(1) // number of children in subtree
$o1.append(is.x[0])
for i=1, is.size-1 {
if ($o1.x[cx_index] + cx.x[i] < $5) {
$o1.x[cx_index] += cx.x[i]
$o1.x[nchild_index] += 1
}else{
$o1.x[nsubtree_index] += 1
cx_index = $o1.size $o1.append(cx.x[i])
nchild_index = $o1.size $o1.append(1)
}
$o1.append(is.x[i])
}
// some of the individuals may be large and need to be split themselves
// so the complexity added above may need to be updated
cx_index = nsubtree_index + 1
for i = 0, $o1.x[nsubtree_index] - 1 {
if ($o1.x[cx_index] > $5) { // needs splitting
if (cansplit(srlist, $o1, cx_index+2)) {
// if (srlist.object($o1.x[cx_index+2]).nchild > 0 ) {
j = ms_getsplit($o1.x[cx_index+2], $5)
$o1.x[2] += 1
c = ms_split($o1, j, 1, 0, $5)
$o1.x[cx_index] -= c
// but now this subtree has a backbone so there
// is extra complexity proportional to the number
// of segments on the backbone. Count from (j,1) to
// ($2,$3)
if (backbone_cx_) {
cbk = backbone_cx_ * cnt_bb_seg($2, $3, j, 1)
if ($2 == 0) {
// in case we do not in fact split
// cbk_soma = cbk
}
bb_piece_cx.x[cx_piece_indices.indwhere("==", cx_index)] += cbk
}
}else{
// printf("Piece %d with complexity %g cannot be split\n", cx_index, $o1.x[cx_index])
}
}
if (i < $o1.x[nsubtree_index] - 1) {
cx_index += 2 + $o1.x[cx_index + 1]
cx_piece_indices.append(cx_index)
bb_piece_cx.append(0)
}
}
npiece += $o1.x[nsubtree_index]
return ctotal
}
// if (cansplit(srlist, $o1, cx_index+2)) { replaces
// if (srlist.object($o1.x[cx_index+2]).nchild > 0 ) {
func cansplit() {local i, b, x localobj sr
sr = $o1.o($o2.x[$3])
// sr.sec print "cansplit ", secname(), " ", $3
if (sr.nchild == 0) { return 0 }
b = 0
for i=0, sr.nchild -1 sr.child[i] {
x = parent_connection()
if (x == 0 || x == 1) {
b = 1
}
}
return b
}
func cnt_bb_seg() {local i, j, ns, xp
ns = 0
// all segs until reach the first section
for (i = $3; i != $1; i = j) {
srlist.object(i).sec {
ns += nseg + 1 // include the 0 area node
xp = parent_connection()
}
srlist.object(i).parent {
j = cm(.0001)
}
}
// only the segs in first section from $2 to ...
srlist.object($1).sec { j = (nseg*abs($2-xp)) + 1 }
ns += j
// srlist.object($3).sec printf("%d segments from %s(%g) to ", ns, secname(), $4)
// srlist.object($1).sec printf("%s(%g)\n", secname(), $2)
return ns
}
// return a split parent index descending from srlist.object($1)
// so the backbone is < $2
// The only problem is that one or more of the children at the
// split point should be allowed to be part of the parent backbone
func ms_getsplit() {local i, id, idold, c, ctotal, clargest, ilargest
id = $1
idold = $1
ctotal = roots_complex_.x[id]
c = ctotal
while (ctotal - c < $2 && c > $2) {
c = 0
clargest = 0
for children(id, &i) {
c += roots_complex_.x[i]
if (roots_complex_.x[i] > clargest) {
clargest = roots_complex_.x[i]
ilargest = i
}
}
if (ctotal - c > $2) { break }
idold = id
id = ilargest
}
return idold
}
endtemplate LoadBalance
|