This file is indexed.

/usr/share/nrn/demo/release/cabpump.mod is in neuron 7.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
TITLE Calcium ion accumulation and diffusion with pump
: The internal coordinate system is set up in PROCEDURE coord_cadifus()
: and must be executed before computing the concentrations.
: The scale factors set up in this procedure do not have to be recomputed
: when diam or DFree are changed.
: The amount of calcium in an annulus is ca[i]*diam^2*vol[i] with
: ca[0] being the second order correct concentration at the exact edge
: and ca[NANN-1] being the concentration at the exact center

? interface
NEURON {
	SUFFIX cadifpmp
	USEION ca READ cao, ica WRITE cai, ica
	RANGE ica_pmp, ica_pmp_last
	GLOBAL vol, pump0
}

DEFINE NANN  10

UNITS {
	(mV)	= (millivolt)
	(molar) = (1/liter)
	(mM)	= (millimolar)
	(um)	= (micron)
	(mA)	= (milliamp)
	(mol)	= (1)
	FARADAY = (faraday)	 (coulomb)
	PI	= (pi)		(1)
	R 	= (k-mole)	(joule/degC)
}

PARAMETER {
	DFree = .6	(um2/ms) <0,1e9>
	beta = 50		<0, 1e9>

        k1 = 5e8        (/mM-s) <0, 1e10>:optional mm formulation
        k2 = .25e6      (/s)	<0, 1e10>
        k3 = .5e3       (/s)	<0, 1e10>
        k4 = 5e0        (/mM-s)	<0, 1e10>
	pump0 = 3e-14 (mol/cm2) <0, 1e9> : set to 0 in hoc if this pump not wanted
}

ASSIGNED {
	celsius		(degC)
	diam		(um)
	v		(millivolt)
	cao		(mM)
	cai		(mM)
	ica		(mA/cm2)
	vol[NANN]	(1)	: gets extra cm2 when multiplied by diam^2
        ica_pmp (mA/cm2)
        area1    (um2)
        c1      (1+8 um5/ms)
        c2      (1-10 um2/ms)
        c3      (1-10 um2/ms)
        c4      (1+8 um5/ms)
	ica_pmp_last (mA/cm2)
}

CONSTANT {
	volo = 1 (liter)
}

STATE {
	ca[NANN]	(mM) <1e-6> : ca[0] is equivalent to cai
        pump    (mol/cm2)	<1e-15>
        pumpca  (mol/cm2)	<1e-15>
}

INITIAL {LOCAL total
	parms()
	FROM i=0 TO NANN-1 {
		ca[i] = cai
	}
	pumpca = cai*pump*c1/c2
	total = pumpca + pump
	if (total > 1e-9) {
		pump = pump*(pump/total)
		pumpca = pumpca*(pump/total)
	}
	ica_pmp = 0
	ica_pmp_last = 0
}

BREAKPOINT {
	SOLVE state METHOD sparse
	ica_pmp_last = ica_pmp
	ica = ica_pmp
:	printf("Breakpoint t=%g v=%g cai=%g ica=%g\n", t, v, cai, ica)
}

LOCAL frat[NANN] 	: gets extra cm when multiplied by diam

PROCEDURE coord() {
	LOCAL r, dr2
	: cylindrical coordinate system  with constant annuli thickness to
	: center of cell. Note however that the first annulus is half thickness
	: so that the concentration is second order correct spatially at
	: the membrane or exact edge of the cell.
	: note ca[0] is at edge of cell
	:      ca[NANN-1] is at center of cell
	r = 1/2					:starts at edge (half diam)
	dr2 = r/(NANN-1)/2			:half thickness of annulus
	vol[0] = 0
	frat[0] = 2*r
	FROM i=0 TO NANN-2 {
		vol[i] = vol[i] + PI*(r-dr2/2)*2*dr2	:interior half
		r = r - dr2
		frat[i+1] = 2*PI*r/(2*dr2)	:exterior edge of annulus
					: divided by distance between centers
		r = r - dr2
		vol[i+1] = PI*(r+dr2/2)*2*dr2	:outer half of annulus
	}
}

KINETIC state {
:	printf("Solve begin t=%g v=%g cai=%g ica_pmp=%g\n", t, v, cai, ica_pmp)
	COMPARTMENT i, (1+beta)*diam*diam*vol[i]*1(um) {ca}
	COMPARTMENT (1e10)*area1 {pump pumpca}
	COMPARTMENT volo*(1e15) {cao}
? kinetics
	~ pumpca <-> pump + cao		(c3, c4)
	ica_pmp = (1e-4)*2*FARADAY*(f_flux - b_flux)/area1
	: all currents except pump
	~ ca[0] << (-(ica-ica_pmp_last)*PI*diam*1(um)*(1e4)*frat[0]/(2*FARADAY))
	:diffusion
	FROM i=0 TO NANN-2 {
		~ ca[i] <-> ca[i+1] (DFree*frat[i+1]*1(um), DFree*frat[i+1]*1(um))
	}
	:pump
	~ ca[0] + pump <-> pumpca	(c1, c2)
	cai = ca[0] : this assignment statement is used specially by cvode
:	printf("Solve end cai=%g ica=%g ica_pmp=%g ica_pmp_last=%g\n",
:		 cai, ica, ica_pmp,ica_pmp_last)
}
	
PROCEDURE parms() {
	coord()
	area1 = 2*PI*(diam/2) * 1(um)
        c1 = (1e7)*area1 * k1
        c2 = (1e7)*area1 * k2
        c3 = (1e7)*area1 * k3
        c4 = (1e7)*area1 * k4  
}

FUNCTION ss() (mM) {
	SOLVE state STEADYSTATE sparse
	ss = cai
}

COMMENT
At this time, conductances (and channel states and currents are
calculated at the midpoint of a dt interval.  Membrane potential and
concentrations are calculated at the edges of a dt interval.  With
secondorder=2 everything turns out to be second order correct.
ENDCOMMENT