This file is indexed.

/usr/share/nrn/demo/dend3/dend3.nrn is in neuron 7.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
func eq_diam() { return  (($1^(3/2))/$2)^(2/3) }
/*
	eq_diam() calculates the equivalent diameter of $2 children
	according to the 3/2 power constraint of rall.

	Parameters
	----------------
	$1   diameter of bp ( eq. cylinder )
	$2   degree of branching
	assumes equivalent electrotonic distances
*/

func eq_leng() { return  $2 * sqrt(1e4*$1/4/global_ra/$3) }
/*
	Calculates the equivalent length, L, for a section from diameter,
	conductance and equivalent electronic length, Z.

	Parameters
	----------------
	$1   diameter of section
	$2   Z, eletrotonic distance section is to have
	$3   conductance of passive section
	Ra in a global constant 
*/

func eq_z() { return $2 / sqrt(1e4*$1/4/global_ra/$3) }
/*
	Returns the equivalent electrotonic distance, Z, from
	diameter, length and number of children. 

	$1	?
	$2	length of eq cylinder
	$3	?
	returns z for $1, $2, & $3
*/

func Q() { return 3^(($1-16.3)/10) }
/* computes the Q(10)=3 for a base temp of 16.3 C */


strdef nrnname
nrnname		= "MH5"

/*
	MH6, Revised from MH5 in densities, hillock and myelin lengths
	for best fit to vc and antidromic expts.    July '93
	MH5.NRN a NEURON program, Revised from mh4  Aug 1991
	(c) John Moore, Mike Hines 
	* nmyelin=6, five node-myelin pairs
	* Dendrites now each have nseg=9
	* Hillock now tapered in geometry and channel density
	* Axon now tapered in channel density - previous uniformity made Vclamp
		currents almost linear with GNa in axon
	to add:
	* a dynamic dendritic tree
	* a coefficent for nseg ( a segmentation factor ).
*/

proc model_globals() {

/* membrane defaults */
celsius		= 15
v_init		= -70		/* initial voltage; v at rest */
g_passive	= .0003		/* the standard pas conductance */
erev_passive	= -70		/* the pas reversal potential */
global_ra	= 200		/* the axial resistance */
set_ra()
gnaHH		= .12
gkHH		= .036
glHH		= .0003


/* Conductance coefficients for various sections */
/* gfhillock = tapered from gfsoma to gfaxon */
gfsoma		= .5	
gfhill		= 2
gfaxon		= 4	
gfnode		= 10	/*I soma independent of this */
gfdend		= 0

/* dendritic tree description */
num_of_levels	= 1		/* number of levels in the dendritic tree */
root_diam	= 46		/* diameter of the equiv. cylinder of tree */
z		= 1.5		/* electrotonic length of tree */

/* Motoneuron */
nmyelin		= 6 		/* the number of myelin-node pairs */
ndend		= 3		/* the # of dendrites connected to the soma */
br_degree	= 2		/* degree of branching @ every level of tree */

/* shape parameters */
mlen0 = 250
mlen1 = 500
mlen2 = 1000
hlen = 10
alen = 100

}
model_globals()

create soma, hillock, axon, myelin[nmyelin], node[nmyelin], \
       dend[ndend]

access soma                        /* set soma as default section */


proc mhg() {
	/* TOPOLOGY
		connect sections such that all indices radiate out from the soma.
	*/
	soma      connect hillock(0), 0
	hillock   connect axon(0), 1
	if (nmyelin>0) {
		axon      connect myelin[0](0), 1
		myelin[0] connect node[0](0), 1
		if (nmyelin>1) {
			for i=1,nmyelin-1 {
				node[i-1]   connect myelin[i](0),1
				myelin[i] connect node[i](0), 1
			}
		}
	}

	for i=0,ndend-1 {
		soma connect dend[i](0), 1
	}

	/* compartmentalization */
	soma      { nseg= 1 }
	axon      { nseg= 5 }

	hillock   { nseg= 4 }

	for i=0, nmyelin-1 {
		myelin[i].nseg = 5
		node[i].nseg = 1
	}

	dz= z/num_of_levels	/* electrotonic length of each level */
	for i=0,ndend-1 {
		dend[i]  { nseg = 27 }
	}

	set_ra()
	morphol()
	membrane()
}

proc morphol() {
	
	/* MORPHOLOGY */
	soma      { L= 100   diam= 100 }
	axon      { L= alen   diam= 10 }

	/* put axon before hillock, since hillock uses diam.axon(.5) */
	hillock   {
		L= hlen
		/*  linearly tapering hillock */
		dsoma		= soma.diam(0)
		daxon		= axon.diam(0)
		diam(0:1) = dsoma:daxon
	}
	mdiam=20
	myelin[0] { L= mlen0   diam= mdiam }
	node[0]   { L= 6   diam= 7 }
	myelin[1] { L= mlen1   diam= mdiam }
	node[1]   { L= 6   diam= 7 }
	if (nmyelin > 2)  for i=2,nmyelin-1 {
		myelin[i] { L= mlen2  diam= mdiam }
		node[i]   { L= 6   diam= 7 }
	}

	dz= z/num_of_levels	/* electrotonic length of each level */
	for i=0,ndend-1 {
		dend[i]  { 
			diam	= eq_diam(root_diam,ndend)
			L	= eq_leng(diam,dz,g_passive)
		}
	}
}

proc membrane() {

	/* MEMBRANE */
	soma      {  insert hh  gnabar_hh= gfsoma*gnaHH gkbar_hh= gfsoma*gkHH gl_hh= gfsoma*glHH }
	hillock   { 
		insert hh
		gnabar_hh(0:1) = gfsoma*gnaHH:gfhill*gnaHH
		gkbar_hh(0:1) = gfsoma*gkHH:gfhill*gkHH
		gl_hh(0:1) = gfsoma*glHH:gfhill*glHH
	}
	axon	{
		insert hh	/* with tapering density */
		gnabar_hh(0:1) = gfhill*gnaHH:gfaxon*gnaHH
		gkbar_hh(0:1) = gfhill*gkHH:gfaxon*gkHH
		gl_hh(0:1) = gfhill*glHH:gfaxon*glHH
	}

	for i=0,nmyelin-1 {
		/* check whether g_pas.myelin should = g_passive/200 */
		myelin[i] { insert pas  g_pas= .003/200 e_pas= v_init cm= .005}
		node[i]   { insert hh  gnabar_hh= gfnode*gnaHH 
				gkbar_hh= gfnode*gkHH gl_hh= gfnode*glHH }
	}

	for i=0,ndend-1 {
		dend[i]  { insert pas  g_pas= g_passive  e_pas= erev_passive }
	}

	/* set el_hh for compatibility with FRED3.NRN */
	finitialize(v_init)
	fcurrent()
	forall {
		if (ismembrane("hh")) { el_hh= v + (ina +ik)/gl_hh }
	}
}

mhg()

proc model_defaults() {
	model_globals()
	morphol()
	membrane()
}