/usr/include/llvm-5.0/llvm/XRay/Graph.h is in llvm-5.0-dev 1:5.0.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 | //===-- Graph.h - XRay Graph Class ------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// A Graph Datatype for XRay.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_XRAY_GRAPH_T_H
#define LLVM_XRAY_GRAPH_T_H
#include <initializer_list>
#include <stdint.h>
#include <type_traits>
#include <utility>
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/iterator.h"
#include "llvm/Support/Error.h"
namespace llvm {
namespace xray {
/// A Graph object represents a Directed Graph and is used in XRay to compute
/// and store function call graphs and associated statistical information.
///
/// The graph takes in four template parameters, these are:
/// - VertexAttribute, this is a structure which is stored for each vertex.
/// Must be DefaultConstructible, CopyConstructible, CopyAssignable and
/// Destructible.
/// - EdgeAttribute, this is a structure which is stored for each edge
/// Must be DefaultConstructible, CopyConstructible, CopyAssignable and
/// Destructible.
/// - EdgeAttribute, this is a structure which is stored for each variable
/// - VI, this is a type over which DenseMapInfo is defined and is the type
/// used look up strings, available as VertexIdentifier.
/// - If the built in DenseMapInfo is not defined, provide a specialization
/// class type here.
///
/// Graph is CopyConstructible, CopyAssignable, MoveConstructible and
/// MoveAssignable but is not EqualityComparible or LessThanComparible.
///
/// Usage Example Graph with weighted edges and vertices:
/// Graph<int, int, int> G;
///
/// G[1] = 0;
/// G[2] = 2;
/// G[{1,2}] = 1;
/// G[{2,1}] = -1;
/// for(const auto &v : G.vertices()){
/// // Do something with the vertices in the graph;
/// }
/// for(const auto &e : G.edges()){
/// // Do something with the edges in the graph;
/// }
///
/// Usage Example with StrRef keys.
/// Graph<int, double, StrRef> StrG;
/// char va[] = "Vertex A";
/// char vaa[] = "Vertex A";
/// char vb[] = "Vertex B"; // Vertices are referenced by String Refs.
/// G[va] = 0;
/// G[vb] = 1;
/// G[{va, vb}] = 1.0;
/// cout() << G[vaa] << " " << G[{vaa, vb}]; //prints "0 1.0".
///
template <typename VertexAttribute, typename EdgeAttribute,
typename VI = int32_t>
class Graph {
public:
/// These objects are used to name edges and vertices in the graph.
typedef VI VertexIdentifier;
typedef std::pair<VI, VI> EdgeIdentifier;
/// This type is the value_type of all iterators which range over vertices,
/// Determined by the Vertices DenseMap
using VertexValueType =
detail::DenseMapPair<VertexIdentifier, VertexAttribute>;
/// This type is the value_type of all iterators which range over edges,
/// Determined by the Edges DenseMap.
using EdgeValueType = detail::DenseMapPair<EdgeIdentifier, EdgeAttribute>;
using size_type = std::size_t;
private:
/// The type used for storing the EdgeAttribute for each edge in the graph
using EdgeMapT = DenseMap<EdgeIdentifier, EdgeAttribute>;
/// The type used for storing the VertexAttribute for each vertex in
/// the graph.
using VertexMapT = DenseMap<VertexIdentifier, VertexAttribute>;
/// The type used for storing the edges entering a vertex. Indexed by
/// the VertexIdentifier of the start of the edge. Only used to determine
/// where the incoming edges are, the EdgeIdentifiers are stored in an
/// InnerEdgeMapT.
using NeighborSetT = DenseSet<VertexIdentifier>;
/// The type storing the InnerInvGraphT corresponding to each vertex in
/// the graph (When a vertex has an incoming edge incident to it)
using NeighborLookupT = DenseMap<VertexIdentifier, NeighborSetT>;
private:
/// Stores the map from the start and end vertex of an edge to it's
/// EdgeAttribute
EdgeMapT Edges;
/// Stores the map from VertexIdentifier to VertexAttribute
VertexMapT Vertices;
/// Allows fast lookup for the incoming edge set of any given vertex.
NeighborLookupT InNeighbors;
/// Allows fast lookup for the outgoing edge set of any given vertex.
NeighborLookupT OutNeighbors;
/// An Iterator adapter using an InnerInvGraphT::iterator as a base iterator,
/// and storing the VertexIdentifier the iterator range comes from. The
/// dereference operator is then performed using a pointer to the graph's edge
/// set.
template <bool IsConst, bool IsOut,
typename BaseIt = typename NeighborSetT::const_iterator,
typename T = typename std::conditional<IsConst, const EdgeValueType,
EdgeValueType>::type>
class NeighborEdgeIteratorT
: public iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T> {
using InternalEdgeMapT =
typename std::conditional<IsConst, const EdgeMapT, EdgeMapT>::type;
friend class NeighborEdgeIteratorT<false, IsOut, BaseIt, EdgeValueType>;
friend class NeighborEdgeIteratorT<true, IsOut, BaseIt,
const EdgeValueType>;
InternalEdgeMapT *MP;
VertexIdentifier SI;
public:
template <bool IsConstDest,
typename = typename std::enable_if<IsConstDest && !IsConst>::type>
operator NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>() const {
return NeighborEdgeIteratorT<IsConstDest, IsOut, BaseIt,
const EdgeValueType>(this->I, MP, SI);
}
NeighborEdgeIteratorT() = default;
NeighborEdgeIteratorT(BaseIt _I, InternalEdgeMapT *_MP,
VertexIdentifier _SI)
: iterator_adaptor_base<
NeighborEdgeIteratorT<IsConst, IsOut>, BaseIt,
typename std::iterator_traits<BaseIt>::iterator_category, T>(_I),
MP(_MP), SI(_SI) {}
T &operator*() const {
if (!IsOut)
return *(MP->find({*(this->I), SI}));
else
return *(MP->find({SI, *(this->I)}));
}
};
public:
/// A const iterator type for iterating through the set of edges entering a
/// vertex.
///
/// Has a const EdgeValueType as its value_type
using ConstInEdgeIterator = NeighborEdgeIteratorT<true, false>;
/// An iterator type for iterating through the set of edges leaving a vertex.
///
/// Has an EdgeValueType as its value_type
using InEdgeIterator = NeighborEdgeIteratorT<false, false>;
/// A const iterator type for iterating through the set of edges entering a
/// vertex.
///
/// Has a const EdgeValueType as its value_type
using ConstOutEdgeIterator = NeighborEdgeIteratorT<true, true>;
/// An iterator type for iterating through the set of edges leaving a vertex.
///
/// Has an EdgeValueType as its value_type
using OutEdgeIterator = NeighborEdgeIteratorT<false, true>;
/// A class for ranging over the incoming edges incident to a vertex.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst, bool isOut> class InOutEdgeView {
public:
using iterator = NeighborEdgeIteratorT<isConst, isOut>;
using const_iterator = NeighborEdgeIteratorT<true, isOut>;
using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
using InternalEdgeMapT =
typename std::conditional<isConst, const EdgeMapT, EdgeMapT>::type;
private:
InternalEdgeMapT &M;
const VertexIdentifier A;
const NeighborLookupT &NL;
public:
iterator begin() {
auto It = NL.find(A);
if (It == NL.end())
return iterator();
return iterator(It->second.begin(), &M, A);
}
const_iterator cbegin() const {
auto It = NL.find(A);
if (It == NL.end())
return const_iterator();
return const_iterator(It->second.begin(), &M, A);
}
const_iterator begin() const { return cbegin(); }
iterator end() {
auto It = NL.find(A);
if (It == NL.end())
return iterator();
return iterator(It->second.end(), &M, A);
}
const_iterator cend() const {
auto It = NL.find(A);
if (It == NL.end())
return const_iterator();
return const_iterator(It->second.end(), &M, A);
}
const_iterator end() const { return cend(); }
size_type size() const {
auto I = NL.find(A);
if (I == NL.end())
return 0;
else
return I->second.size();
}
bool empty() const { return NL.count(A) == 0; };
InOutEdgeView(GraphT &G, VertexIdentifier A)
: M(G.Edges), A(A), NL(isOut ? G.OutNeighbors : G.InNeighbors) {}
};
/// A const iterator type for iterating through the whole vertex set of the
/// graph.
///
/// Has a const VertexValueType as its value_type
using ConstVertexIterator = typename VertexMapT::const_iterator;
/// An iterator type for iterating through the whole vertex set of the graph.
///
/// Has a VertexValueType as its value_type
using VertexIterator = typename VertexMapT::iterator;
/// A class for ranging over the vertices in the graph.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class VertexView {
public:
using iterator = typename std::conditional<isConst, ConstVertexIterator,
VertexIterator>::type;
using const_iterator = ConstVertexIterator;
using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
private:
GraphT &G;
public:
iterator begin() { return G.Vertices.begin(); }
iterator end() { return G.Vertices.end(); }
const_iterator cbegin() const { return G.Vertices.cbegin(); }
const_iterator cend() const { return G.Vertices.cend(); }
const_iterator begin() const { return G.Vertices.begin(); }
const_iterator end() const { return G.Vertices.end(); }
size_type size() const { return G.Vertices.size(); }
bool empty() const { return G.Vertices.empty(); }
VertexView(GraphT &_G) : G(_G) {}
};
/// A const iterator for iterating through the entire edge set of the graph.
///
/// Has a const EdgeValueType as its value_type
using ConstEdgeIterator = typename EdgeMapT::const_iterator;
/// An iterator for iterating through the entire edge set of the graph.
///
/// Has an EdgeValueType as its value_type
using EdgeIterator = typename EdgeMapT::iterator;
/// A class for ranging over all the edges in the graph.
///
/// Like all views in this class it provides methods to get the beginning and
/// past the range iterators for the range, as well as methods to determine
/// the number of elements in the range and whether the range is empty.
template <bool isConst> class EdgeView {
public:
using iterator = typename std::conditional<isConst, ConstEdgeIterator,
EdgeIterator>::type;
using const_iterator = ConstEdgeIterator;
using GraphT = typename std::conditional<isConst, const Graph, Graph>::type;
private:
GraphT &G;
public:
iterator begin() { return G.Edges.begin(); }
iterator end() { return G.Edges.end(); }
const_iterator cbegin() const { return G.Edges.cbegin(); }
const_iterator cend() const { return G.Edges.cend(); }
const_iterator begin() const { return G.Edges.begin(); }
const_iterator end() const { return G.Edges.end(); }
size_type size() const { return G.Edges.size(); }
bool empty() const { return G.Edges.empty(); }
EdgeView(GraphT &_G) : G(_G) {}
};
public:
// TODO: implement constructor to enable Graph Initialisation.\
// Something like:
// Graph<int, int, int> G(
// {1, 2, 3, 4, 5},
// {{1, 2}, {2, 3}, {3, 4}});
/// Empty the Graph
void clear() {
Edges.clear();
Vertices.clear();
InNeighbors.clear();
OutNeighbors.clear();
}
/// Returns a view object allowing iteration over the vertices of the graph.
/// also allows access to the size of the vertex set.
VertexView<false> vertices() { return VertexView<false>(*this); }
VertexView<true> vertices() const { return VertexView<true>(*this); }
/// Returns a view object allowing iteration over the edges of the graph.
/// also allows access to the size of the edge set.
EdgeView<false> edges() { return EdgeView<false>(*this); }
EdgeView<true> edges() const { return EdgeView<true>(*this); }
/// Returns a view object allowing iteration over the edges which start at
/// a vertex I.
InOutEdgeView<false, true> outEdges(const VertexIdentifier I) {
return InOutEdgeView<false, true>(*this, I);
}
InOutEdgeView<true, true> outEdges(const VertexIdentifier I) const {
return InOutEdgeView<true, true>(*this, I);
}
/// Returns a view object allowing iteration over the edges which point to
/// a vertex I.
InOutEdgeView<false, false> inEdges(const VertexIdentifier I) {
return InOutEdgeView<false, false>(*this, I);
}
InOutEdgeView<true, false> inEdges(const VertexIdentifier I) const {
return InOutEdgeView<true, false>(*this, I);
}
/// Looks up the vertex with identifier I, if it does not exist it default
/// constructs it.
VertexAttribute &operator[](const VertexIdentifier &I) {
return Vertices.FindAndConstruct(I).second;
}
/// Looks up the edge with identifier I, if it does not exist it default
/// constructs it, if it's endpoints do not exist it also default constructs
/// them.
EdgeAttribute &operator[](const EdgeIdentifier &I) {
auto &P = Edges.FindAndConstruct(I);
Vertices.FindAndConstruct(I.first);
Vertices.FindAndConstruct(I.second);
InNeighbors[I.second].insert(I.first);
OutNeighbors[I.first].insert(I.second);
return P.second;
}
/// Looks up a vertex with Identifier I, or an error if it does not exist.
Expected<VertexAttribute &> at(const VertexIdentifier &I) {
auto It = Vertices.find(I);
if (It == Vertices.end())
return make_error<StringError>(
"Vertex Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
Expected<const VertexAttribute &> at(const VertexIdentifier &I) const {
auto It = Vertices.find(I);
if (It == Vertices.end())
return make_error<StringError>(
"Vertex Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
/// Looks up an edge with Identifier I, or an error if it does not exist.
Expected<EdgeAttribute &> at(const EdgeIdentifier &I) {
auto It = Edges.find(I);
if (It == Edges.end())
return make_error<StringError>(
"Edge Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
Expected<const EdgeAttribute &> at(const EdgeIdentifier &I) const {
auto It = Edges.find(I);
if (It == Edges.end())
return make_error<StringError>(
"Edge Identifier Does Not Exist",
std::make_error_code(std::errc::invalid_argument));
return It->second;
}
/// Looks for a vertex with identifier I, returns 1 if one exists, and
/// 0 otherwise
size_type count(const VertexIdentifier &I) const {
return Vertices.count(I);
}
/// Looks for an edge with Identifier I, returns 1 if one exists and 0
/// otherwise
size_type count(const EdgeIdentifier &I) const { return Edges.count(I); }
/// Inserts a vertex into the graph with Identifier Val.first, and
/// Attribute Val.second.
std::pair<VertexIterator, bool>
insert(const std::pair<VertexIdentifier, VertexAttribute> &Val) {
return Vertices.insert(Val);
}
std::pair<VertexIterator, bool>
insert(std::pair<VertexIdentifier, VertexAttribute> &&Val) {
return Vertices.insert(std::move(Val));
}
/// Inserts an edge into the graph with Identifier Val.first, and
/// Attribute Val.second. If the key is already in the map, it returns false
/// and doesn't update the value.
std::pair<EdgeIterator, bool>
insert(const std::pair<EdgeIdentifier, EdgeAttribute> &Val) {
const auto &p = Edges.insert(Val);
if (p.second) {
const auto &EI = Val.first;
Vertices.FindAndConstruct(EI.first);
Vertices.FindAndConstruct(EI.second);
InNeighbors[EI.second].insert(EI.first);
OutNeighbors[EI.first].insert(EI.second);
};
return p;
}
/// Inserts an edge into the graph with Identifier Val.first, and
/// Attribute Val.second. If the key is already in the map, it returns false
/// and doesn't update the value.
std::pair<EdgeIterator, bool>
insert(std::pair<EdgeIdentifier, EdgeAttribute> &&Val) {
auto EI = Val.first;
const auto &p = Edges.insert(std::move(Val));
if (p.second) {
Vertices.FindAndConstruct(EI.first);
Vertices.FindAndConstruct(EI.second);
InNeighbors[EI.second].insert(EI.first);
OutNeighbors[EI.first].insert(EI.second);
};
return p;
}
};
}
}
#endif
|