/usr/include/llvm-5.0/llvm/ExecutionEngine/RuntimeDyld.h is in llvm-5.0-dev 1:5.0.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 | //===- RuntimeDyld.h - Run-time dynamic linker for MC-JIT -------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Interface for the runtime dynamic linker facilities of the MC-JIT.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
#define LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DIContext.h"
#include "llvm/ExecutionEngine/JITSymbol.h"
#include "llvm/Object/ObjectFile.h"
#include "llvm/Support/Error.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <map>
#include <memory>
#include <string>
#include <system_error>
namespace llvm {
namespace object {
template <typename T> class OwningBinary;
} // end namespace object
/// Base class for errors originating in RuntimeDyld, e.g. missing relocation
/// support.
class RuntimeDyldError : public ErrorInfo<RuntimeDyldError> {
public:
static char ID;
RuntimeDyldError(std::string ErrMsg) : ErrMsg(std::move(ErrMsg)) {}
void log(raw_ostream &OS) const override;
const std::string &getErrorMessage() const { return ErrMsg; }
std::error_code convertToErrorCode() const override;
private:
std::string ErrMsg;
};
class RuntimeDyldCheckerImpl;
class RuntimeDyldImpl;
class RuntimeDyld {
friend class RuntimeDyldCheckerImpl;
protected:
// Change the address associated with a section when resolving relocations.
// Any relocations already associated with the symbol will be re-resolved.
void reassignSectionAddress(unsigned SectionID, uint64_t Addr);
public:
/// \brief Information about the loaded object.
class LoadedObjectInfo : public llvm::LoadedObjectInfo {
friend class RuntimeDyldImpl;
public:
using ObjSectionToIDMap = std::map<object::SectionRef, unsigned>;
LoadedObjectInfo(RuntimeDyldImpl &RTDyld, ObjSectionToIDMap ObjSecToIDMap)
: RTDyld(RTDyld), ObjSecToIDMap(std::move(ObjSecToIDMap)) {}
virtual object::OwningBinary<object::ObjectFile>
getObjectForDebug(const object::ObjectFile &Obj) const = 0;
uint64_t
getSectionLoadAddress(const object::SectionRef &Sec) const override;
protected:
virtual void anchor();
RuntimeDyldImpl &RTDyld;
ObjSectionToIDMap ObjSecToIDMap;
};
/// \brief Memory Management.
class MemoryManager {
friend class RuntimeDyld;
public:
MemoryManager() = default;
virtual ~MemoryManager() = default;
/// Allocate a memory block of (at least) the given size suitable for
/// executable code. The SectionID is a unique identifier assigned by the
/// RuntimeDyld instance, and optionally recorded by the memory manager to
/// access a loaded section.
virtual uint8_t *allocateCodeSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName) = 0;
/// Allocate a memory block of (at least) the given size suitable for data.
/// The SectionID is a unique identifier assigned by the JIT engine, and
/// optionally recorded by the memory manager to access a loaded section.
virtual uint8_t *allocateDataSection(uintptr_t Size, unsigned Alignment,
unsigned SectionID,
StringRef SectionName,
bool IsReadOnly) = 0;
/// Inform the memory manager about the total amount of memory required to
/// allocate all sections to be loaded:
/// \p CodeSize - the total size of all code sections
/// \p DataSizeRO - the total size of all read-only data sections
/// \p DataSizeRW - the total size of all read-write data sections
///
/// Note that by default the callback is disabled. To enable it
/// redefine the method needsToReserveAllocationSpace to return true.
virtual void reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign,
uintptr_t RODataSize,
uint32_t RODataAlign,
uintptr_t RWDataSize,
uint32_t RWDataAlign) {}
/// Override to return true to enable the reserveAllocationSpace callback.
virtual bool needsToReserveAllocationSpace() { return false; }
/// Register the EH frames with the runtime so that c++ exceptions work.
///
/// \p Addr parameter provides the local address of the EH frame section
/// data, while \p LoadAddr provides the address of the data in the target
/// address space. If the section has not been remapped (which will usually
/// be the case for local execution) these two values will be the same.
virtual void registerEHFrames(uint8_t *Addr, uint64_t LoadAddr,
size_t Size) = 0;
virtual void deregisterEHFrames() = 0;
/// This method is called when object loading is complete and section page
/// permissions can be applied. It is up to the memory manager implementation
/// to decide whether or not to act on this method. The memory manager will
/// typically allocate all sections as read-write and then apply specific
/// permissions when this method is called. Code sections cannot be executed
/// until this function has been called. In addition, any cache coherency
/// operations needed to reliably use the memory are also performed.
///
/// Returns true if an error occurred, false otherwise.
virtual bool finalizeMemory(std::string *ErrMsg = nullptr) = 0;
/// This method is called after an object has been loaded into memory but
/// before relocations are applied to the loaded sections.
///
/// Memory managers which are preparing code for execution in an external
/// address space can use this call to remap the section addresses for the
/// newly loaded object.
///
/// For clients that do not need access to an ExecutionEngine instance this
/// method should be preferred to its cousin
/// MCJITMemoryManager::notifyObjectLoaded as this method is compatible with
/// ORC JIT stacks.
virtual void notifyObjectLoaded(RuntimeDyld &RTDyld,
const object::ObjectFile &Obj) {}
private:
virtual void anchor();
bool FinalizationLocked = false;
};
/// \brief Construct a RuntimeDyld instance.
RuntimeDyld(MemoryManager &MemMgr, JITSymbolResolver &Resolver);
RuntimeDyld(const RuntimeDyld &) = delete;
RuntimeDyld &operator=(const RuntimeDyld &) = delete;
~RuntimeDyld();
/// Add the referenced object file to the list of objects to be loaded and
/// relocated.
std::unique_ptr<LoadedObjectInfo> loadObject(const object::ObjectFile &O);
/// Get the address of our local copy of the symbol. This may or may not
/// be the address used for relocation (clients can copy the data around
/// and resolve relocatons based on where they put it).
void *getSymbolLocalAddress(StringRef Name) const;
/// Get the target address and flags for the named symbol.
/// This address is the one used for relocation.
JITEvaluatedSymbol getSymbol(StringRef Name) const;
/// Resolve the relocations for all symbols we currently know about.
void resolveRelocations();
/// Map a section to its target address space value.
/// Map the address of a JIT section as returned from the memory manager
/// to the address in the target process as the running code will see it.
/// This is the address which will be used for relocation resolution.
void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress);
/// Register any EH frame sections that have been loaded but not previously
/// registered with the memory manager. Note, RuntimeDyld is responsible
/// for identifying the EH frame and calling the memory manager with the
/// EH frame section data. However, the memory manager itself will handle
/// the actual target-specific EH frame registration.
void registerEHFrames();
void deregisterEHFrames();
bool hasError();
StringRef getErrorString();
/// By default, only sections that are "required for execution" are passed to
/// the RTDyldMemoryManager, and other sections are discarded. Passing 'true'
/// to this method will cause RuntimeDyld to pass all sections to its
/// memory manager regardless of whether they are "required to execute" in the
/// usual sense. This is useful for inspecting metadata sections that may not
/// contain relocations, E.g. Debug info, stackmaps.
///
/// Must be called before the first object file is loaded.
void setProcessAllSections(bool ProcessAllSections) {
assert(!Dyld && "setProcessAllSections must be called before loadObject.");
this->ProcessAllSections = ProcessAllSections;
}
/// Perform all actions needed to make the code owned by this RuntimeDyld
/// instance executable:
///
/// 1) Apply relocations.
/// 2) Register EH frames.
/// 3) Update memory permissions*.
///
/// * Finalization is potentially recursive**, and the 3rd step will only be
/// applied by the outermost call to finalize. This allows different
/// RuntimeDyld instances to share a memory manager without the innermost
/// finalization locking the memory and causing relocation fixup errors in
/// outer instances.
///
/// ** Recursive finalization occurs when one RuntimeDyld instances needs the
/// address of a symbol owned by some other instance in order to apply
/// relocations.
///
void finalizeWithMemoryManagerLocking();
private:
// RuntimeDyldImpl is the actual class. RuntimeDyld is just the public
// interface.
std::unique_ptr<RuntimeDyldImpl> Dyld;
MemoryManager &MemMgr;
JITSymbolResolver &Resolver;
bool ProcessAllSections;
RuntimeDyldCheckerImpl *Checker;
};
} // end namespace llvm
#endif // LLVM_EXECUTIONENGINE_RUNTIMEDYLD_H
|