/usr/include/llvm-5.0/llvm/CodeGen/LiveIntervalAnalysis.h is in llvm-5.0-dev 1:5.0.1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 | //===- LiveIntervalAnalysis.h - Live Interval Analysis ----------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file This file implements the LiveInterval analysis pass. Given some
/// numbering of each the machine instructions (in this implemention depth-first
/// order) an interval [i, j) is said to be a live interval for register v if
/// there is no instruction with number j' > j such that v is live at j' and
/// there is no instruction with number i' < i such that v is live at i'. In
/// this implementation intervals can have holes, i.e. an interval might look
/// like [1,20), [50,65), [1000,1001).
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
#define LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/IndexedMap.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include <cassert>
#include <cstdint>
#include <utility>
namespace llvm {
extern cl::opt<bool> UseSegmentSetForPhysRegs;
class BitVector;
class LiveRangeCalc;
class MachineBlockFrequencyInfo;
class MachineDominatorTree;
class MachineFunction;
class MachineInstr;
class MachineRegisterInfo;
class raw_ostream;
class TargetInstrInfo;
class VirtRegMap;
class LiveIntervals : public MachineFunctionPass {
MachineFunction* MF;
MachineRegisterInfo* MRI;
const TargetRegisterInfo* TRI;
const TargetInstrInfo* TII;
AliasAnalysis *AA;
SlotIndexes* Indexes;
MachineDominatorTree *DomTree = nullptr;
LiveRangeCalc *LRCalc = nullptr;
/// Special pool allocator for VNInfo's (LiveInterval val#).
VNInfo::Allocator VNInfoAllocator;
/// Live interval pointers for all the virtual registers.
IndexedMap<LiveInterval*, VirtReg2IndexFunctor> VirtRegIntervals;
/// Sorted list of instructions with register mask operands. Always use the
/// 'r' slot, RegMasks are normal clobbers, not early clobbers.
SmallVector<SlotIndex, 8> RegMaskSlots;
/// This vector is parallel to RegMaskSlots, it holds a pointer to the
/// corresponding register mask. This pointer can be recomputed as:
///
/// MI = Indexes->getInstructionFromIndex(RegMaskSlot[N]);
/// unsigned OpNum = findRegMaskOperand(MI);
/// RegMaskBits[N] = MI->getOperand(OpNum).getRegMask();
///
/// This is kept in a separate vector partly because some standard
/// libraries don't support lower_bound() with mixed objects, partly to
/// improve locality when searching in RegMaskSlots.
/// Also see the comment in LiveInterval::find().
SmallVector<const uint32_t*, 8> RegMaskBits;
/// For each basic block number, keep (begin, size) pairs indexing into the
/// RegMaskSlots and RegMaskBits arrays.
/// Note that basic block numbers may not be layout contiguous, that's why
/// we can't just keep track of the first register mask in each basic
/// block.
SmallVector<std::pair<unsigned, unsigned>, 8> RegMaskBlocks;
/// Keeps a live range set for each register unit to track fixed physreg
/// interference.
SmallVector<LiveRange*, 0> RegUnitRanges;
public:
static char ID;
LiveIntervals();
~LiveIntervals() override;
/// Calculate the spill weight to assign to a single instruction.
static float getSpillWeight(bool isDef, bool isUse,
const MachineBlockFrequencyInfo *MBFI,
const MachineInstr &Instr);
LiveInterval &getInterval(unsigned Reg) {
if (hasInterval(Reg))
return *VirtRegIntervals[Reg];
else
return createAndComputeVirtRegInterval(Reg);
}
const LiveInterval &getInterval(unsigned Reg) const {
return const_cast<LiveIntervals*>(this)->getInterval(Reg);
}
bool hasInterval(unsigned Reg) const {
return VirtRegIntervals.inBounds(Reg) && VirtRegIntervals[Reg];
}
/// Interval creation.
LiveInterval &createEmptyInterval(unsigned Reg) {
assert(!hasInterval(Reg) && "Interval already exists!");
VirtRegIntervals.grow(Reg);
VirtRegIntervals[Reg] = createInterval(Reg);
return *VirtRegIntervals[Reg];
}
LiveInterval &createAndComputeVirtRegInterval(unsigned Reg) {
LiveInterval &LI = createEmptyInterval(Reg);
computeVirtRegInterval(LI);
return LI;
}
/// Interval removal.
void removeInterval(unsigned Reg) {
delete VirtRegIntervals[Reg];
VirtRegIntervals[Reg] = nullptr;
}
/// Given a register and an instruction, adds a live segment from that
/// instruction to the end of its MBB.
LiveInterval::Segment addSegmentToEndOfBlock(unsigned reg,
MachineInstr &startInst);
/// After removing some uses of a register, shrink its live range to just
/// the remaining uses. This method does not compute reaching defs for new
/// uses, and it doesn't remove dead defs.
/// Dead PHIDef values are marked as unused. New dead machine instructions
/// are added to the dead vector. Returns true if the interval may have been
/// separated into multiple connected components.
bool shrinkToUses(LiveInterval *li,
SmallVectorImpl<MachineInstr*> *dead = nullptr);
/// Specialized version of
/// shrinkToUses(LiveInterval *li, SmallVectorImpl<MachineInstr*> *dead)
/// that works on a subregister live range and only looks at uses matching
/// the lane mask of the subregister range.
/// This may leave the subrange empty which needs to be cleaned up with
/// LiveInterval::removeEmptySubranges() afterwards.
void shrinkToUses(LiveInterval::SubRange &SR, unsigned Reg);
/// Extend the live range \p LR to reach all points in \p Indices. The
/// points in the \p Indices array must be jointly dominated by the union
/// of the existing defs in \p LR and points in \p Undefs.
///
/// PHI-defs are added as needed to maintain SSA form.
///
/// If a SlotIndex in \p Indices is the end index of a basic block, \p LR
/// will be extended to be live out of the basic block.
/// If a SlotIndex in \p Indices is jointy dominated only by points in
/// \p Undefs, the live range will not be extended to that point.
///
/// See also LiveRangeCalc::extend().
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices,
ArrayRef<SlotIndex> Undefs);
void extendToIndices(LiveRange &LR, ArrayRef<SlotIndex> Indices) {
extendToIndices(LR, Indices, /*Undefs=*/{});
}
/// If \p LR has a live value at \p Kill, prune its live range by removing
/// any liveness reachable from Kill. Add live range end points to
/// EndPoints such that extendToIndices(LI, EndPoints) will reconstruct the
/// value's live range.
///
/// Calling pruneValue() and extendToIndices() can be used to reconstruct
/// SSA form after adding defs to a virtual register.
void pruneValue(LiveRange &LR, SlotIndex Kill,
SmallVectorImpl<SlotIndex> *EndPoints);
/// This function should not be used. Its intend is to tell you that
/// you are doing something wrong if you call pruveValue directly on a
/// LiveInterval. Indeed, you are supposed to call pruneValue on the main
/// LiveRange and all the LiveRange of the subranges if any.
LLVM_ATTRIBUTE_UNUSED void pruneValue(LiveInterval &, SlotIndex,
SmallVectorImpl<SlotIndex> *) {
llvm_unreachable(
"Use pruneValue on the main LiveRange and on each subrange");
}
SlotIndexes *getSlotIndexes() const {
return Indexes;
}
AliasAnalysis *getAliasAnalysis() const {
return AA;
}
/// Returns true if the specified machine instr has been removed or was
/// never entered in the map.
bool isNotInMIMap(const MachineInstr &Instr) const {
return !Indexes->hasIndex(Instr);
}
/// Returns the base index of the given instruction.
SlotIndex getInstructionIndex(const MachineInstr &Instr) const {
return Indexes->getInstructionIndex(Instr);
}
/// Returns the instruction associated with the given index.
MachineInstr* getInstructionFromIndex(SlotIndex index) const {
return Indexes->getInstructionFromIndex(index);
}
/// Return the first index in the given basic block.
SlotIndex getMBBStartIdx(const MachineBasicBlock *mbb) const {
return Indexes->getMBBStartIdx(mbb);
}
/// Return the last index in the given basic block.
SlotIndex getMBBEndIdx(const MachineBasicBlock *mbb) const {
return Indexes->getMBBEndIdx(mbb);
}
bool isLiveInToMBB(const LiveRange &LR,
const MachineBasicBlock *mbb) const {
return LR.liveAt(getMBBStartIdx(mbb));
}
bool isLiveOutOfMBB(const LiveRange &LR,
const MachineBasicBlock *mbb) const {
return LR.liveAt(getMBBEndIdx(mbb).getPrevSlot());
}
MachineBasicBlock* getMBBFromIndex(SlotIndex index) const {
return Indexes->getMBBFromIndex(index);
}
void insertMBBInMaps(MachineBasicBlock *MBB) {
Indexes->insertMBBInMaps(MBB);
assert(unsigned(MBB->getNumber()) == RegMaskBlocks.size() &&
"Blocks must be added in order.");
RegMaskBlocks.push_back(std::make_pair(RegMaskSlots.size(), 0));
}
SlotIndex InsertMachineInstrInMaps(MachineInstr &MI) {
return Indexes->insertMachineInstrInMaps(MI);
}
void InsertMachineInstrRangeInMaps(MachineBasicBlock::iterator B,
MachineBasicBlock::iterator E) {
for (MachineBasicBlock::iterator I = B; I != E; ++I)
Indexes->insertMachineInstrInMaps(*I);
}
void RemoveMachineInstrFromMaps(MachineInstr &MI) {
Indexes->removeMachineInstrFromMaps(MI);
}
SlotIndex ReplaceMachineInstrInMaps(MachineInstr &MI, MachineInstr &NewMI) {
return Indexes->replaceMachineInstrInMaps(MI, NewMI);
}
VNInfo::Allocator& getVNInfoAllocator() { return VNInfoAllocator; }
void getAnalysisUsage(AnalysisUsage &AU) const override;
void releaseMemory() override;
/// Pass entry point; Calculates LiveIntervals.
bool runOnMachineFunction(MachineFunction&) override;
/// Implement the dump method.
void print(raw_ostream &O, const Module* = nullptr) const override;
/// If LI is confined to a single basic block, return a pointer to that
/// block. If LI is live in to or out of any block, return NULL.
MachineBasicBlock *intervalIsInOneMBB(const LiveInterval &LI) const;
/// Returns true if VNI is killed by any PHI-def values in LI.
/// This may conservatively return true to avoid expensive computations.
bool hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const;
/// Add kill flags to any instruction that kills a virtual register.
void addKillFlags(const VirtRegMap*);
/// Call this method to notify LiveIntervals that instruction \p MI has been
/// moved within a basic block. This will update the live intervals for all
/// operands of \p MI. Moves between basic blocks are not supported.
///
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
void handleMove(MachineInstr &MI, bool UpdateFlags = false);
/// Update intervals for operands of \p MI so that they begin/end on the
/// SlotIndex for \p BundleStart.
///
/// \param UpdateFlags Update live intervals for nonallocatable physregs.
///
/// Requires MI and BundleStart to have SlotIndexes, and assumes
/// existing liveness is accurate. BundleStart should be the first
/// instruction in the Bundle.
void handleMoveIntoBundle(MachineInstr &MI, MachineInstr &BundleStart,
bool UpdateFlags = false);
/// Update live intervals for instructions in a range of iterators. It is
/// intended for use after target hooks that may insert or remove
/// instructions, and is only efficient for a small number of instructions.
///
/// OrigRegs is a vector of registers that were originally used by the
/// instructions in the range between the two iterators.
///
/// Currently, the only only changes that are supported are simple removal
/// and addition of uses.
void repairIntervalsInRange(MachineBasicBlock *MBB,
MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
ArrayRef<unsigned> OrigRegs);
// Register mask functions.
//
// Machine instructions may use a register mask operand to indicate that a
// large number of registers are clobbered by the instruction. This is
// typically used for calls.
//
// For compile time performance reasons, these clobbers are not recorded in
// the live intervals for individual physical registers. Instead,
// LiveIntervalAnalysis maintains a sorted list of instructions with
// register mask operands.
/// Returns a sorted array of slot indices of all instructions with
/// register mask operands.
ArrayRef<SlotIndex> getRegMaskSlots() const { return RegMaskSlots; }
/// Returns a sorted array of slot indices of all instructions with register
/// mask operands in the basic block numbered \p MBBNum.
ArrayRef<SlotIndex> getRegMaskSlotsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskSlots().slice(P.first, P.second);
}
/// Returns an array of register mask pointers corresponding to
/// getRegMaskSlots().
ArrayRef<const uint32_t*> getRegMaskBits() const { return RegMaskBits; }
/// Returns an array of mask pointers corresponding to
/// getRegMaskSlotsInBlock(MBBNum).
ArrayRef<const uint32_t*> getRegMaskBitsInBlock(unsigned MBBNum) const {
std::pair<unsigned, unsigned> P = RegMaskBlocks[MBBNum];
return getRegMaskBits().slice(P.first, P.second);
}
/// Test if \p LI is live across any register mask instructions, and
/// compute a bit mask of physical registers that are not clobbered by any
/// of them.
///
/// Returns false if \p LI doesn't cross any register mask instructions. In
/// that case, the bit vector is not filled in.
bool checkRegMaskInterference(LiveInterval &LI,
BitVector &UsableRegs);
// Register unit functions.
//
// Fixed interference occurs when MachineInstrs use physregs directly
// instead of virtual registers. This typically happens when passing
// arguments to a function call, or when instructions require operands in
// fixed registers.
//
// Each physreg has one or more register units, see MCRegisterInfo. We
// track liveness per register unit to handle aliasing registers more
// efficiently.
/// Return the live range for register unit \p Unit. It will be computed if
/// it doesn't exist.
LiveRange &getRegUnit(unsigned Unit) {
LiveRange *LR = RegUnitRanges[Unit];
if (!LR) {
// Compute missing ranges on demand.
// Use segment set to speed-up initial computation of the live range.
RegUnitRanges[Unit] = LR = new LiveRange(UseSegmentSetForPhysRegs);
computeRegUnitRange(*LR, Unit);
}
return *LR;
}
/// Return the live range for register unit \p Unit if it has already been
/// computed, or nullptr if it hasn't been computed yet.
LiveRange *getCachedRegUnit(unsigned Unit) {
return RegUnitRanges[Unit];
}
const LiveRange *getCachedRegUnit(unsigned Unit) const {
return RegUnitRanges[Unit];
}
/// Remove computed live range for register unit \p Unit. Subsequent uses
/// should rely on on-demand recomputation.
void removeRegUnit(unsigned Unit) {
delete RegUnitRanges[Unit];
RegUnitRanges[Unit] = nullptr;
}
/// Remove value numbers and related live segments starting at position
/// \p Pos that are part of any liverange of physical register \p Reg or one
/// of its subregisters.
void removePhysRegDefAt(unsigned Reg, SlotIndex Pos);
/// Remove value number and related live segments of \p LI and its subranges
/// that start at position \p Pos.
void removeVRegDefAt(LiveInterval &LI, SlotIndex Pos);
/// Split separate components in LiveInterval \p LI into separate intervals.
void splitSeparateComponents(LiveInterval &LI,
SmallVectorImpl<LiveInterval*> &SplitLIs);
/// For live interval \p LI with correct SubRanges construct matching
/// information for the main live range. Expects the main live range to not
/// have any segments or value numbers.
void constructMainRangeFromSubranges(LiveInterval &LI);
private:
/// Compute live intervals for all virtual registers.
void computeVirtRegs();
/// Compute RegMaskSlots and RegMaskBits.
void computeRegMasks();
/// Walk the values in \p LI and check for dead values:
/// - Dead PHIDef values are marked as unused.
/// - Dead operands are marked as such.
/// - Completely dead machine instructions are added to the \p dead vector
/// if it is not nullptr.
/// Returns true if any PHI value numbers have been removed which may
/// have separated the interval into multiple connected components.
bool computeDeadValues(LiveInterval &LI,
SmallVectorImpl<MachineInstr*> *dead);
static LiveInterval* createInterval(unsigned Reg);
void printInstrs(raw_ostream &O) const;
void dumpInstrs() const;
void computeLiveInRegUnits();
void computeRegUnitRange(LiveRange&, unsigned Unit);
void computeVirtRegInterval(LiveInterval&);
/// Helper function for repairIntervalsInRange(), walks backwards and
/// creates/modifies live segments in \p LR to match the operands found.
/// Only full operands or operands with subregisters matching \p LaneMask
/// are considered.
void repairOldRegInRange(MachineBasicBlock::iterator Begin,
MachineBasicBlock::iterator End,
const SlotIndex endIdx, LiveRange &LR,
unsigned Reg,
LaneBitmask LaneMask = LaneBitmask::getAll());
class HMEditor;
};
} // end namespace llvm
#endif // LLVM_CODEGEN_LIVEINTERVALANALYSIS_H
|