This file is indexed.

/usr/include/llvm-5.0/llvm/Analysis/LoopInfo.h is in llvm-5.0-dev 1:5.0.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
//===- llvm/Analysis/LoopInfo.h - Natural Loop Calculator -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the LoopInfo class that is used to identify natural loops
// and determine the loop depth of various nodes of the CFG.  A natural loop
// has exactly one entry-point, which is called the header. Note that natural
// loops may actually be several loops that share the same header node.
//
// This analysis calculates the nesting structure of loops in a function.  For
// each natural loop identified, this analysis identifies natural loops
// contained entirely within the loop and the basic blocks the make up the loop.
//
// It can calculate on the fly various bits of information, for example:
//
//  * whether there is a preheader for the loop
//  * the number of back edges to the header
//  * whether or not a particular block branches out of the loop
//  * the successor blocks of the loop
//  * the loop depth
//  * etc...
//
// Note that this analysis specifically identifies *Loops* not cycles or SCCs
// in the CFG.  There can be strongly connected components in the CFG which
// this analysis will not recognize and that will not be represented by a Loop
// instance.  In particular, a Loop might be inside such a non-loop SCC, or a
// non-loop SCC might contain a sub-SCC which is a Loop. 
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_LOOPINFO_H
#define LLVM_ANALYSIS_LOOPINFO_H

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/GraphTraits.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Pass.h"
#include <algorithm>

namespace llvm {

class DominatorTree;
class LoopInfo;
class Loop;
class MDNode;
class PHINode;
class raw_ostream;
template <class N, bool IsPostDom>
class DominatorTreeBase;
template<class N, class M> class LoopInfoBase;
template<class N, class M> class LoopBase;

//===----------------------------------------------------------------------===//
/// Instances of this class are used to represent loops that are detected in the
/// flow graph.
///
template<class BlockT, class LoopT>
class LoopBase {
  LoopT *ParentLoop;
  // Loops contained entirely within this one.
  std::vector<LoopT *> SubLoops;

  // The list of blocks in this loop. First entry is the header node.
  std::vector<BlockT*> Blocks;

  SmallPtrSet<const BlockT*, 8> DenseBlockSet;

  /// Indicator that this loop is no longer a valid loop.
  bool IsInvalid = false;

  LoopBase(const LoopBase<BlockT, LoopT> &) = delete;
  const LoopBase<BlockT, LoopT>&
    operator=(const LoopBase<BlockT, LoopT> &) = delete;
public:
  /// This creates an empty loop.
  LoopBase() : ParentLoop(nullptr) {}
  ~LoopBase() {
    for (size_t i = 0, e = SubLoops.size(); i != e; ++i)
      delete SubLoops[i];
  }

  /// Return the nesting level of this loop.  An outer-most loop has depth 1,
  /// for consistency with loop depth values used for basic blocks, where depth
  /// 0 is used for blocks not inside any loops.
  unsigned getLoopDepth() const {
    unsigned D = 1;
    for (const LoopT *CurLoop = ParentLoop; CurLoop;
         CurLoop = CurLoop->ParentLoop)
      ++D;
    return D;
  }
  BlockT *getHeader() const { return Blocks.front(); }
  LoopT *getParentLoop() const { return ParentLoop; }

  /// This is a raw interface for bypassing addChildLoop.
  void setParentLoop(LoopT *L) { ParentLoop = L; }

  /// Return true if the specified loop is contained within in this loop.
  bool contains(const LoopT *L) const {
    if (L == this) return true;
    if (!L)        return false;
    return contains(L->getParentLoop());
  }

  /// Return true if the specified basic block is in this loop.
  bool contains(const BlockT *BB) const {
    return DenseBlockSet.count(BB);
  }

  /// Return true if the specified instruction is in this loop.
  template<class InstT>
  bool contains(const InstT *Inst) const {
    return contains(Inst->getParent());
  }

  /// Return the loops contained entirely within this loop.
  const std::vector<LoopT *> &getSubLoops() const { return SubLoops; }
  std::vector<LoopT *> &getSubLoopsVector() { return SubLoops; }
  typedef typename std::vector<LoopT *>::const_iterator iterator;
  typedef typename std::vector<LoopT *>::const_reverse_iterator
    reverse_iterator;
  iterator begin() const { return SubLoops.begin(); }
  iterator end() const { return SubLoops.end(); }
  reverse_iterator rbegin() const { return SubLoops.rbegin(); }
  reverse_iterator rend() const { return SubLoops.rend(); }
  bool empty() const { return SubLoops.empty(); }

  /// Get a list of the basic blocks which make up this loop.
  const std::vector<BlockT*> &getBlocks() const { return Blocks; }
  typedef typename std::vector<BlockT*>::const_iterator block_iterator;
  block_iterator block_begin() const { return Blocks.begin(); }
  block_iterator block_end() const { return Blocks.end(); }
  inline iterator_range<block_iterator> blocks() const {
    return make_range(block_begin(), block_end());
  }

  /// Get the number of blocks in this loop in constant time.
  unsigned getNumBlocks() const {
    return Blocks.size();
  }

  /// Invalidate the loop, indicating that it is no longer a loop.
  void invalidate() { IsInvalid = true; }

  /// Return true if this loop is no longer valid.
  bool isInvalid() { return IsInvalid; }

  /// True if terminator in the block can branch to another block that is
  /// outside of the current loop.
  bool isLoopExiting(const BlockT *BB) const {
    for (const auto &Succ : children<const BlockT*>(BB)) {
      if (!contains(Succ))
        return true;
    }
    return false;
  }

  /// Returns true if \p BB is a loop-latch.
  /// A latch block is a block that contains a branch back to the header.
  /// This function is useful when there are multiple latches in a loop
  /// because \fn getLoopLatch will return nullptr in that case.
  bool isLoopLatch(const BlockT *BB) const {
    assert(contains(BB) && "block does not belong to the loop");

    BlockT *Header = getHeader();
    auto PredBegin = GraphTraits<Inverse<BlockT*> >::child_begin(Header);
    auto PredEnd = GraphTraits<Inverse<BlockT*> >::child_end(Header);
    return std::find(PredBegin, PredEnd, BB) != PredEnd;
  }

  /// Calculate the number of back edges to the loop header.
  unsigned getNumBackEdges() const {
    unsigned NumBackEdges = 0;
    BlockT *H = getHeader();

    for (const auto Pred : children<Inverse<BlockT*> >(H))
      if (contains(Pred))
        ++NumBackEdges;

    return NumBackEdges;
  }

  //===--------------------------------------------------------------------===//
  // APIs for simple analysis of the loop.
  //
  // Note that all of these methods can fail on general loops (ie, there may not
  // be a preheader, etc).  For best success, the loop simplification and
  // induction variable canonicalization pass should be used to normalize loops
  // for easy analysis.  These methods assume canonical loops.

  /// Return all blocks inside the loop that have successors outside of the
  /// loop. These are the blocks _inside of the current loop_ which branch out.
  /// The returned list is always unique.
  void getExitingBlocks(SmallVectorImpl<BlockT *> &ExitingBlocks) const;

  /// If getExitingBlocks would return exactly one block, return that block.
  /// Otherwise return null.
  BlockT *getExitingBlock() const;

  /// Return all of the successor blocks of this loop. These are the blocks
  /// _outside of the current loop_ which are branched to.
  void getExitBlocks(SmallVectorImpl<BlockT*> &ExitBlocks) const;

  /// If getExitBlocks would return exactly one block, return that block.
  /// Otherwise return null.
  BlockT *getExitBlock() const;

  /// Edge type.
  typedef std::pair<const BlockT*, const BlockT*> Edge;

  /// Return all pairs of (_inside_block_,_outside_block_).
  void getExitEdges(SmallVectorImpl<Edge> &ExitEdges) const;

  /// If there is a preheader for this loop, return it. A loop has a preheader
  /// if there is only one edge to the header of the loop from outside of the
  /// loop. If this is the case, the block branching to the header of the loop
  /// is the preheader node.
  ///
  /// This method returns null if there is no preheader for the loop.
  BlockT *getLoopPreheader() const;

  /// If the given loop's header has exactly one unique predecessor outside the
  /// loop, return it. Otherwise return null.
  ///  This is less strict that the loop "preheader" concept, which requires
  /// the predecessor to have exactly one successor.
  BlockT *getLoopPredecessor() const;

  /// If there is a single latch block for this loop, return it.
  /// A latch block is a block that contains a branch back to the header.
  BlockT *getLoopLatch() const;

  /// Return all loop latch blocks of this loop. A latch block is a block that
  /// contains a branch back to the header.
  void getLoopLatches(SmallVectorImpl<BlockT *> &LoopLatches) const {
    BlockT *H = getHeader();
    for (const auto Pred : children<Inverse<BlockT*>>(H))
      if (contains(Pred))
        LoopLatches.push_back(Pred);
  }

  //===--------------------------------------------------------------------===//
  // APIs for updating loop information after changing the CFG
  //

  /// This method is used by other analyses to update loop information.
  /// NewBB is set to be a new member of the current loop.
  /// Because of this, it is added as a member of all parent loops, and is added
  /// to the specified LoopInfo object as being in the current basic block.  It
  /// is not valid to replace the loop header with this method.
  void addBasicBlockToLoop(BlockT *NewBB, LoopInfoBase<BlockT, LoopT> &LI);

  /// This is used when splitting loops up. It replaces the OldChild entry in
  /// our children list with NewChild, and updates the parent pointer of
  /// OldChild to be null and the NewChild to be this loop.
  /// This updates the loop depth of the new child.
  void replaceChildLoopWith(LoopT *OldChild, LoopT *NewChild);

  /// Add the specified loop to be a child of this loop.
  /// This updates the loop depth of the new child.
  void addChildLoop(LoopT *NewChild) {
    assert(!NewChild->ParentLoop && "NewChild already has a parent!");
    NewChild->ParentLoop = static_cast<LoopT *>(this);
    SubLoops.push_back(NewChild);
  }

  /// This removes the specified child from being a subloop of this loop. The
  /// loop is not deleted, as it will presumably be inserted into another loop.
  LoopT *removeChildLoop(iterator I) {
    assert(I != SubLoops.end() && "Cannot remove end iterator!");
    LoopT *Child = *I;
    assert(Child->ParentLoop == this && "Child is not a child of this loop!");
    SubLoops.erase(SubLoops.begin()+(I-begin()));
    Child->ParentLoop = nullptr;
    return Child;
  }

  /// This adds a basic block directly to the basic block list.
  /// This should only be used by transformations that create new loops.  Other
  /// transformations should use addBasicBlockToLoop.
  void addBlockEntry(BlockT *BB) {
    Blocks.push_back(BB);
    DenseBlockSet.insert(BB);
  }

  /// interface to reverse Blocks[from, end of loop] in this loop
  void reverseBlock(unsigned from) {
    std::reverse(Blocks.begin() + from, Blocks.end());
  }

  /// interface to do reserve() for Blocks
  void reserveBlocks(unsigned size) {
    Blocks.reserve(size);
  }

  /// This method is used to move BB (which must be part of this loop) to be the
  /// loop header of the loop (the block that dominates all others).
  void moveToHeader(BlockT *BB) {
    if (Blocks[0] == BB) return;
    for (unsigned i = 0; ; ++i) {
      assert(i != Blocks.size() && "Loop does not contain BB!");
      if (Blocks[i] == BB) {
        Blocks[i] = Blocks[0];
        Blocks[0] = BB;
        return;
      }
    }
  }

  /// This removes the specified basic block from the current loop, updating the
  /// Blocks as appropriate. This does not update the mapping in the LoopInfo
  /// class.
  void removeBlockFromLoop(BlockT *BB) {
    auto I = find(Blocks, BB);
    assert(I != Blocks.end() && "N is not in this list!");
    Blocks.erase(I);

    DenseBlockSet.erase(BB);
  }

  /// Verify loop structure
  void verifyLoop() const;

  /// Verify loop structure of this loop and all nested loops.
  void verifyLoopNest(DenseSet<const LoopT*> *Loops) const;

  /// Print loop with all the BBs inside it.
  void print(raw_ostream &OS, unsigned Depth = 0, bool Verbose = false) const;

protected:
  friend class LoopInfoBase<BlockT, LoopT>;
  explicit LoopBase(BlockT *BB) : ParentLoop(nullptr) {
    Blocks.push_back(BB);
    DenseBlockSet.insert(BB);
  }
};

template<class BlockT, class LoopT>
raw_ostream& operator<<(raw_ostream &OS, const LoopBase<BlockT, LoopT> &Loop) {
  Loop.print(OS);
  return OS;
}

// Implementation in LoopInfoImpl.h
extern template class LoopBase<BasicBlock, Loop>;


/// Represents a single loop in the control flow graph.  Note that not all SCCs
/// in the CFG are necessarily loops.
class Loop : public LoopBase<BasicBlock, Loop> {
public:
  /// \brief A range representing the start and end location of a loop.
  class LocRange {
    DebugLoc Start;
    DebugLoc End;

  public:
    LocRange() {}
    LocRange(DebugLoc Start) : Start(std::move(Start)), End(std::move(Start)) {}
    LocRange(DebugLoc Start, DebugLoc End) : Start(std::move(Start)),
                                             End(std::move(End)) {}

    const DebugLoc &getStart() const { return Start; }
    const DebugLoc &getEnd() const { return End; }

    /// \brief Check for null.
    ///
    explicit operator bool() const {
      return Start && End;
    }
  };

  Loop() {}

  /// Return true if the specified value is loop invariant.
  bool isLoopInvariant(const Value *V) const;

  /// Return true if all the operands of the specified instruction are loop
  /// invariant.
  bool hasLoopInvariantOperands(const Instruction *I) const;

  /// If the given value is an instruction inside of the loop and it can be
  /// hoisted, do so to make it trivially loop-invariant.
  /// Return true if the value after any hoisting is loop invariant. This
  /// function can be used as a slightly more aggressive replacement for
  /// isLoopInvariant.
  ///
  /// If InsertPt is specified, it is the point to hoist instructions to.
  /// If null, the terminator of the loop preheader is used.
  bool makeLoopInvariant(Value *V, bool &Changed,
                         Instruction *InsertPt = nullptr) const;

  /// If the given instruction is inside of the loop and it can be hoisted, do
  /// so to make it trivially loop-invariant.
  /// Return true if the instruction after any hoisting is loop invariant. This
  /// function can be used as a slightly more aggressive replacement for
  /// isLoopInvariant.
  ///
  /// If InsertPt is specified, it is the point to hoist instructions to.
  /// If null, the terminator of the loop preheader is used.
  ///
  bool makeLoopInvariant(Instruction *I, bool &Changed,
                         Instruction *InsertPt = nullptr) const;

  /// Check to see if the loop has a canonical induction variable: an integer
  /// recurrence that starts at 0 and increments by one each time through the
  /// loop. If so, return the phi node that corresponds to it.
  ///
  /// The IndVarSimplify pass transforms loops to have a canonical induction
  /// variable.
  ///
  PHINode *getCanonicalInductionVariable() const;

  /// Return true if the Loop is in LCSSA form.
  bool isLCSSAForm(DominatorTree &DT) const;

  /// Return true if this Loop and all inner subloops are in LCSSA form.
  bool isRecursivelyLCSSAForm(DominatorTree &DT, const LoopInfo &LI) const;

  /// Return true if the Loop is in the form that the LoopSimplify form
  /// transforms loops to, which is sometimes called normal form.
  bool isLoopSimplifyForm() const;

  /// Return true if the loop body is safe to clone in practice.
  bool isSafeToClone() const;

  /// Returns true if the loop is annotated parallel.
  ///
  /// A parallel loop can be assumed to not contain any dependencies between
  /// iterations by the compiler. That is, any loop-carried dependency checking
  /// can be skipped completely when parallelizing the loop on the target
  /// machine. Thus, if the parallel loop information originates from the
  /// programmer, e.g. via the OpenMP parallel for pragma, it is the
  /// programmer's responsibility to ensure there are no loop-carried
  /// dependencies. The final execution order of the instructions across
  /// iterations is not guaranteed, thus, the end result might or might not
  /// implement actual concurrent execution of instructions across multiple
  /// iterations.
  bool isAnnotatedParallel() const;

  /// Return the llvm.loop loop id metadata node for this loop if it is present.
  ///
  /// If this loop contains the same llvm.loop metadata on each branch to the
  /// header then the node is returned. If any latch instruction does not
  /// contain llvm.loop or or if multiple latches contain different nodes then
  /// 0 is returned.
  MDNode *getLoopID() const;
  /// Set the llvm.loop loop id metadata for this loop.
  ///
  /// The LoopID metadata node will be added to each terminator instruction in
  /// the loop that branches to the loop header.
  ///
  /// The LoopID metadata node should have one or more operands and the first
  /// operand should be the node itself.
  void setLoopID(MDNode *LoopID) const;

  /// Return true if no exit block for the loop has a predecessor that is
  /// outside the loop.
  bool hasDedicatedExits() const;

  /// Return all unique successor blocks of this loop.
  /// These are the blocks _outside of the current loop_ which are branched to.
  /// This assumes that loop exits are in canonical form, i.e. all exits are
  /// dedicated exits.
  void getUniqueExitBlocks(SmallVectorImpl<BasicBlock *> &ExitBlocks) const;

  /// If getUniqueExitBlocks would return exactly one block, return that block.
  /// Otherwise return null.
  BasicBlock *getUniqueExitBlock() const;

  void dump() const;
  void dumpVerbose() const;

  /// Return the debug location of the start of this loop.
  /// This looks for a BB terminating instruction with a known debug
  /// location by looking at the preheader and header blocks. If it
  /// cannot find a terminating instruction with location information,
  /// it returns an unknown location.
  DebugLoc getStartLoc() const;

  /// Return the source code span of the loop.
  LocRange getLocRange() const;

  StringRef getName() const {
    if (BasicBlock *Header = getHeader())
      if (Header->hasName())
        return Header->getName();
    return "<unnamed loop>";
  }

private:
  friend class LoopInfoBase<BasicBlock, Loop>;
  explicit Loop(BasicBlock *BB) : LoopBase<BasicBlock, Loop>(BB) {}
};

//===----------------------------------------------------------------------===//
/// This class builds and contains all of the top-level loop
/// structures in the specified function.
///

template<class BlockT, class LoopT>
class LoopInfoBase {
  // BBMap - Mapping of basic blocks to the inner most loop they occur in
  DenseMap<const BlockT *, LoopT *> BBMap;
  std::vector<LoopT *> TopLevelLoops;
  std::vector<LoopT *> RemovedLoops;

  friend class LoopBase<BlockT, LoopT>;
  friend class LoopInfo;

  void operator=(const LoopInfoBase &) = delete;
  LoopInfoBase(const LoopInfoBase &) = delete;
public:
  LoopInfoBase() { }
  ~LoopInfoBase() { releaseMemory(); }

  LoopInfoBase(LoopInfoBase &&Arg)
      : BBMap(std::move(Arg.BBMap)),
        TopLevelLoops(std::move(Arg.TopLevelLoops)) {
    // We have to clear the arguments top level loops as we've taken ownership.
    Arg.TopLevelLoops.clear();
  }
  LoopInfoBase &operator=(LoopInfoBase &&RHS) {
    BBMap = std::move(RHS.BBMap);

    for (auto *L : TopLevelLoops)
      delete L;
    TopLevelLoops = std::move(RHS.TopLevelLoops);
    RHS.TopLevelLoops.clear();
    return *this;
  }

  void releaseMemory() {
    BBMap.clear();

    for (auto *L : TopLevelLoops)
      delete L;
    TopLevelLoops.clear();
    for (auto *L : RemovedLoops)
      delete L;
    RemovedLoops.clear();
  }

  /// iterator/begin/end - The interface to the top-level loops in the current
  /// function.
  ///
  typedef typename std::vector<LoopT *>::const_iterator iterator;
  typedef typename std::vector<LoopT *>::const_reverse_iterator
    reverse_iterator;
  iterator begin() const { return TopLevelLoops.begin(); }
  iterator end() const { return TopLevelLoops.end(); }
  reverse_iterator rbegin() const { return TopLevelLoops.rbegin(); }
  reverse_iterator rend() const { return TopLevelLoops.rend(); }
  bool empty() const { return TopLevelLoops.empty(); }

  /// Return all of the loops in the function in preorder across the loop
  /// nests, with siblings in forward program order.
  ///
  /// Note that because loops form a forest of trees, preorder is equivalent to
  /// reverse postorder.
  SmallVector<LoopT *, 4> getLoopsInPreorder();

  /// Return all of the loops in the function in preorder across the loop
  /// nests, with siblings in *reverse* program order.
  ///
  /// Note that because loops form a forest of trees, preorder is equivalent to
  /// reverse postorder.
  ///
  /// Also note that this is *not* a reverse preorder. Only the siblings are in
  /// reverse program order.
  SmallVector<LoopT *, 4> getLoopsInReverseSiblingPreorder();

  /// Return the inner most loop that BB lives in. If a basic block is in no
  /// loop (for example the entry node), null is returned.
  LoopT *getLoopFor(const BlockT *BB) const { return BBMap.lookup(BB); }

  /// Same as getLoopFor.
  const LoopT *operator[](const BlockT *BB) const {
    return getLoopFor(BB);
  }

  /// Return the loop nesting level of the specified block. A depth of 0 means
  /// the block is not inside any loop.
  unsigned getLoopDepth(const BlockT *BB) const {
    const LoopT *L = getLoopFor(BB);
    return L ? L->getLoopDepth() : 0;
  }

  // True if the block is a loop header node
  bool isLoopHeader(const BlockT *BB) const {
    const LoopT *L = getLoopFor(BB);
    return L && L->getHeader() == BB;
  }

  /// This removes the specified top-level loop from this loop info object.
  /// The loop is not deleted, as it will presumably be inserted into
  /// another loop.
  LoopT *removeLoop(iterator I) {
    assert(I != end() && "Cannot remove end iterator!");
    LoopT *L = *I;
    assert(!L->getParentLoop() && "Not a top-level loop!");
    TopLevelLoops.erase(TopLevelLoops.begin() + (I-begin()));
    return L;
  }

  /// Change the top-level loop that contains BB to the specified loop.
  /// This should be used by transformations that restructure the loop hierarchy
  /// tree.
  void changeLoopFor(BlockT *BB, LoopT *L) {
    if (!L) {
      BBMap.erase(BB);
      return;
    }
    BBMap[BB] = L;
  }

  /// Replace the specified loop in the top-level loops list with the indicated
  /// loop.
  void changeTopLevelLoop(LoopT *OldLoop,
                          LoopT *NewLoop) {
    auto I = find(TopLevelLoops, OldLoop);
    assert(I != TopLevelLoops.end() && "Old loop not at top level!");
    *I = NewLoop;
    assert(!NewLoop->ParentLoop && !OldLoop->ParentLoop &&
           "Loops already embedded into a subloop!");
  }

  /// This adds the specified loop to the collection of top-level loops.
  void addTopLevelLoop(LoopT *New) {
    assert(!New->getParentLoop() && "Loop already in subloop!");
    TopLevelLoops.push_back(New);
  }

  /// This method completely removes BB from all data structures,
  /// including all of the Loop objects it is nested in and our mapping from
  /// BasicBlocks to loops.
  void removeBlock(BlockT *BB) {
    auto I = BBMap.find(BB);
    if (I != BBMap.end()) {
      for (LoopT *L = I->second; L; L = L->getParentLoop())
        L->removeBlockFromLoop(BB);

      BBMap.erase(I);
    }
  }

  // Internals

  static bool isNotAlreadyContainedIn(const LoopT *SubLoop,
                                      const LoopT *ParentLoop) {
    if (!SubLoop) return true;
    if (SubLoop == ParentLoop) return false;
    return isNotAlreadyContainedIn(SubLoop->getParentLoop(), ParentLoop);
  }

  /// Create the loop forest using a stable algorithm.
  void analyze(const DominatorTreeBase<BlockT, false> &DomTree);

  // Debugging
  void print(raw_ostream &OS) const;

  void verify(const DominatorTreeBase<BlockT, false> &DomTree) const;
};

// Implementation in LoopInfoImpl.h
extern template class LoopInfoBase<BasicBlock, Loop>;

class LoopInfo : public LoopInfoBase<BasicBlock, Loop> {
  typedef LoopInfoBase<BasicBlock, Loop> BaseT;

  friend class LoopBase<BasicBlock, Loop>;

  void operator=(const LoopInfo &) = delete;
  LoopInfo(const LoopInfo &) = delete;
public:
  LoopInfo() {}
  explicit LoopInfo(const DominatorTreeBase<BasicBlock, false> &DomTree);

  LoopInfo(LoopInfo &&Arg) : BaseT(std::move(static_cast<BaseT &>(Arg))) {}
  LoopInfo &operator=(LoopInfo &&RHS) {
    BaseT::operator=(std::move(static_cast<BaseT &>(RHS)));
    return *this;
  }

  /// Handle invalidation explicitly.
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &);

  // Most of the public interface is provided via LoopInfoBase.

  /// Update LoopInfo after removing the last backedge from a loop. This updates
  /// the loop forest and parent loops for each block so that \c L is no longer
  /// referenced, but does not actually delete \c L immediately. The pointer
  /// will remain valid until this LoopInfo's memory is released.
  void markAsRemoved(Loop *L);

  /// Returns true if replacing From with To everywhere is guaranteed to
  /// preserve LCSSA form.
  bool replacementPreservesLCSSAForm(Instruction *From, Value *To) {
    // Preserving LCSSA form is only problematic if the replacing value is an
    // instruction.
    Instruction *I = dyn_cast<Instruction>(To);
    if (!I) return true;
    // If both instructions are defined in the same basic block then replacement
    // cannot break LCSSA form.
    if (I->getParent() == From->getParent())
      return true;
    // If the instruction is not defined in a loop then it can safely replace
    // anything.
    Loop *ToLoop = getLoopFor(I->getParent());
    if (!ToLoop) return true;
    // If the replacing instruction is defined in the same loop as the original
    // instruction, or in a loop that contains it as an inner loop, then using
    // it as a replacement will not break LCSSA form.
    return ToLoop->contains(getLoopFor(From->getParent()));
  }

  /// Checks if moving a specific instruction can break LCSSA in any loop.
  ///
  /// Return true if moving \p Inst to before \p NewLoc will break LCSSA,
  /// assuming that the function containing \p Inst and \p NewLoc is currently
  /// in LCSSA form.
  bool movementPreservesLCSSAForm(Instruction *Inst, Instruction *NewLoc) {
    assert(Inst->getFunction() == NewLoc->getFunction() &&
           "Can't reason about IPO!");

    auto *OldBB = Inst->getParent();
    auto *NewBB = NewLoc->getParent();

    // Movement within the same loop does not break LCSSA (the equality check is
    // to avoid doing a hashtable lookup in case of intra-block movement).
    if (OldBB == NewBB)
      return true;

    auto *OldLoop = getLoopFor(OldBB);
    auto *NewLoop = getLoopFor(NewBB);

    if (OldLoop == NewLoop)
      return true;

    // Check if Outer contains Inner; with the null loop counting as the
    // "outermost" loop.
    auto Contains = [](const Loop *Outer, const Loop *Inner) {
      return !Outer || Outer->contains(Inner);
    };

    // To check that the movement of Inst to before NewLoc does not break LCSSA,
    // we need to check two sets of uses for possible LCSSA violations at
    // NewLoc: the users of NewInst, and the operands of NewInst.

    // If we know we're hoisting Inst out of an inner loop to an outer loop,
    // then the uses *of* Inst don't need to be checked.

    if (!Contains(NewLoop, OldLoop)) {
      for (Use &U : Inst->uses()) {
        auto *UI = cast<Instruction>(U.getUser());
        auto *UBB = isa<PHINode>(UI) ? cast<PHINode>(UI)->getIncomingBlock(U)
                                     : UI->getParent();
        if (UBB != NewBB && getLoopFor(UBB) != NewLoop)
          return false;
      }
    }

    // If we know we're sinking Inst from an outer loop into an inner loop, then
    // the *operands* of Inst don't need to be checked.

    if (!Contains(OldLoop, NewLoop)) {
      // See below on why we can't handle phi nodes here.
      if (isa<PHINode>(Inst))
        return false;

      for (Use &U : Inst->operands()) {
        auto *DefI = dyn_cast<Instruction>(U.get());
        if (!DefI)
          return false;

        // This would need adjustment if we allow Inst to be a phi node -- the
        // new use block won't simply be NewBB.

        auto *DefBlock = DefI->getParent();
        if (DefBlock != NewBB && getLoopFor(DefBlock) != NewLoop)
          return false;
      }
    }

    return true;
  }
};

// Allow clients to walk the list of nested loops...
template <> struct GraphTraits<const Loop*> {
  typedef const Loop *NodeRef;
  typedef LoopInfo::iterator ChildIteratorType;

  static NodeRef getEntryNode(const Loop *L) { return L; }
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
};

template <> struct GraphTraits<Loop*> {
  typedef Loop *NodeRef;
  typedef LoopInfo::iterator ChildIteratorType;

  static NodeRef getEntryNode(Loop *L) { return L; }
  static ChildIteratorType child_begin(NodeRef N) { return N->begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->end(); }
};

/// \brief Analysis pass that exposes the \c LoopInfo for a function.
class LoopAnalysis : public AnalysisInfoMixin<LoopAnalysis> {
  friend AnalysisInfoMixin<LoopAnalysis>;
  static AnalysisKey Key;

public:
  typedef LoopInfo Result;

  LoopInfo run(Function &F, FunctionAnalysisManager &AM);
};

/// \brief Printer pass for the \c LoopAnalysis results.
class LoopPrinterPass : public PassInfoMixin<LoopPrinterPass> {
  raw_ostream &OS;

public:
  explicit LoopPrinterPass(raw_ostream &OS) : OS(OS) {}
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// \brief Verifier pass for the \c LoopAnalysis results.
struct LoopVerifierPass : public PassInfoMixin<LoopVerifierPass> {
  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM);
};

/// \brief The legacy pass manager's analysis pass to compute loop information.
class LoopInfoWrapperPass : public FunctionPass {
  LoopInfo LI;

public:
  static char ID; // Pass identification, replacement for typeid

  LoopInfoWrapperPass() : FunctionPass(ID) {
    initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
  }

  LoopInfo &getLoopInfo() { return LI; }
  const LoopInfo &getLoopInfo() const { return LI; }

  /// \brief Calculate the natural loop information for a given function.
  bool runOnFunction(Function &F) override;

  void verifyAnalysis() const override;

  void releaseMemory() override { LI.releaseMemory(); }

  void print(raw_ostream &O, const Module *M = nullptr) const override;

  void getAnalysisUsage(AnalysisUsage &AU) const override;
};

/// Function to print a loop's contents as LLVM's text IR assembly.
void printLoop(Loop &L, raw_ostream &OS, const std::string &Banner = "");

} // End llvm namespace

#endif