This file is indexed.

/usr/include/llvm-5.0/llvm/Analysis/BasicAliasAnalysis.h is in llvm-5.0-dev 1:5.0.1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
//===- BasicAliasAnalysis.h - Stateless, local Alias Analysis ---*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
/// This is the interface for LLVM's primary stateless and local alias analysis.
///
//===----------------------------------------------------------------------===//

#ifndef LLVM_ANALYSIS_BASICALIASANALYSIS_H
#define LLVM_ANALYSIS_BASICALIASANALYSIS_H

#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GetElementPtrTypeIterator.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/Support/ErrorHandling.h"

namespace llvm {
class AssumptionCache;
class DominatorTree;
class LoopInfo;

/// This is the AA result object for the basic, local, and stateless alias
/// analysis. It implements the AA query interface in an entirely stateless
/// manner. As one consequence, it is never invalidated due to IR changes.
/// While it does retain some storage, that is used as an optimization and not
/// to preserve information from query to query. However it does retain handles
/// to various other analyses and must be recomputed when those analyses are.
class BasicAAResult : public AAResultBase<BasicAAResult> {
  friend AAResultBase<BasicAAResult>;

  const DataLayout &DL;
  const TargetLibraryInfo &TLI;
  AssumptionCache &AC;
  DominatorTree *DT;
  LoopInfo *LI;

public:
  BasicAAResult(const DataLayout &DL, const TargetLibraryInfo &TLI,
                AssumptionCache &AC, DominatorTree *DT = nullptr,
                LoopInfo *LI = nullptr)
      : AAResultBase(), DL(DL), TLI(TLI), AC(AC), DT(DT), LI(LI) {}

  BasicAAResult(const BasicAAResult &Arg)
      : AAResultBase(Arg), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC), DT(Arg.DT),
        LI(Arg.LI) {}
  BasicAAResult(BasicAAResult &&Arg)
      : AAResultBase(std::move(Arg)), DL(Arg.DL), TLI(Arg.TLI), AC(Arg.AC),
        DT(Arg.DT), LI(Arg.LI) {}

  /// Handle invalidation events in the new pass manager.
  bool invalidate(Function &F, const PreservedAnalyses &PA,
                  FunctionAnalysisManager::Invalidator &Inv);

  AliasResult alias(const MemoryLocation &LocA, const MemoryLocation &LocB);

  ModRefInfo getModRefInfo(ImmutableCallSite CS, const MemoryLocation &Loc);

  ModRefInfo getModRefInfo(ImmutableCallSite CS1, ImmutableCallSite CS2);

  /// Chases pointers until we find a (constant global) or not.
  bool pointsToConstantMemory(const MemoryLocation &Loc, bool OrLocal);

  /// Get the location associated with a pointer argument of a callsite.
  ModRefInfo getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx);

  /// Returns the behavior when calling the given call site.
  FunctionModRefBehavior getModRefBehavior(ImmutableCallSite CS);

  /// Returns the behavior when calling the given function. For use when the
  /// call site is not known.
  FunctionModRefBehavior getModRefBehavior(const Function *F);

private:
  // A linear transformation of a Value; this class represents ZExt(SExt(V,
  // SExtBits), ZExtBits) * Scale + Offset.
  struct VariableGEPIndex {

    // An opaque Value - we can't decompose this further.
    const Value *V;

    // We need to track what extensions we've done as we consider the same Value
    // with different extensions as different variables in a GEP's linear
    // expression;
    // e.g.: if V == -1, then sext(x) != zext(x).
    unsigned ZExtBits;
    unsigned SExtBits;

    int64_t Scale;

    bool operator==(const VariableGEPIndex &Other) const {
      return V == Other.V && ZExtBits == Other.ZExtBits &&
             SExtBits == Other.SExtBits && Scale == Other.Scale;
    }

    bool operator!=(const VariableGEPIndex &Other) const {
      return !operator==(Other);
    }
  };

  // Represents the internal structure of a GEP, decomposed into a base pointer,
  // constant offsets, and variable scaled indices.
  struct DecomposedGEP {
    // Base pointer of the GEP
    const Value *Base;
    // Total constant offset w.r.t the base from indexing into structs
    int64_t StructOffset;
    // Total constant offset w.r.t the base from indexing through
    // pointers/arrays/vectors
    int64_t OtherOffset;
    // Scaled variable (non-constant) indices.
    SmallVector<VariableGEPIndex, 4> VarIndices;
  };

  /// Track alias queries to guard against recursion.
  typedef std::pair<MemoryLocation, MemoryLocation> LocPair;
  typedef SmallDenseMap<LocPair, AliasResult, 8> AliasCacheTy;
  AliasCacheTy AliasCache;

  /// Tracks phi nodes we have visited.
  ///
  /// When interpret "Value" pointer equality as value equality we need to make
  /// sure that the "Value" is not part of a cycle. Otherwise, two uses could
  /// come from different "iterations" of a cycle and see different values for
  /// the same "Value" pointer.
  ///
  /// The following example shows the problem:
  ///   %p = phi(%alloca1, %addr2)
  ///   %l = load %ptr
  ///   %addr1 = gep, %alloca2, 0, %l
  ///   %addr2 = gep  %alloca2, 0, (%l + 1)
  ///      alias(%p, %addr1) -> MayAlias !
  ///   store %l, ...
  SmallPtrSet<const BasicBlock *, 8> VisitedPhiBBs;

  /// Tracks instructions visited by pointsToConstantMemory.
  SmallPtrSet<const Value *, 16> Visited;

  static const Value *
  GetLinearExpression(const Value *V, APInt &Scale, APInt &Offset,
                      unsigned &ZExtBits, unsigned &SExtBits,
                      const DataLayout &DL, unsigned Depth, AssumptionCache *AC,
                      DominatorTree *DT, bool &NSW, bool &NUW);

  static bool DecomposeGEPExpression(const Value *V, DecomposedGEP &Decomposed,
      const DataLayout &DL, AssumptionCache *AC, DominatorTree *DT);

  static bool isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
      const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject,
      uint64_t ObjectAccessSize);

  /// \brief A Heuristic for aliasGEP that searches for a constant offset
  /// between the variables.
  ///
  /// GetLinearExpression has some limitations, as generally zext(%x + 1)
  /// != zext(%x) + zext(1) if the arithmetic overflows. GetLinearExpression
  /// will therefore conservatively refuse to decompose these expressions.
  /// However, we know that, for all %x, zext(%x) != zext(%x + 1), even if
  /// the addition overflows.
  bool
  constantOffsetHeuristic(const SmallVectorImpl<VariableGEPIndex> &VarIndices,
                          uint64_t V1Size, uint64_t V2Size, int64_t BaseOffset,
                          AssumptionCache *AC, DominatorTree *DT);

  bool isValueEqualInPotentialCycles(const Value *V1, const Value *V2);

  void GetIndexDifference(SmallVectorImpl<VariableGEPIndex> &Dest,
                          const SmallVectorImpl<VariableGEPIndex> &Src);

  AliasResult aliasGEP(const GEPOperator *V1, uint64_t V1Size,
                       const AAMDNodes &V1AAInfo, const Value *V2,
                       uint64_t V2Size, const AAMDNodes &V2AAInfo,
                       const Value *UnderlyingV1, const Value *UnderlyingV2);

  AliasResult aliasPHI(const PHINode *PN, uint64_t PNSize,
                       const AAMDNodes &PNAAInfo, const Value *V2,
                       uint64_t V2Size, const AAMDNodes &V2AAInfo,
                       const Value *UnderV2);

  AliasResult aliasSelect(const SelectInst *SI, uint64_t SISize,
                          const AAMDNodes &SIAAInfo, const Value *V2,
                          uint64_t V2Size, const AAMDNodes &V2AAInfo,
                          const Value *UnderV2);

  AliasResult aliasCheck(const Value *V1, uint64_t V1Size, AAMDNodes V1AATag,
                         const Value *V2, uint64_t V2Size, AAMDNodes V2AATag,
                         const Value *O1 = nullptr, const Value *O2 = nullptr);
};

/// Analysis pass providing a never-invalidated alias analysis result.
class BasicAA : public AnalysisInfoMixin<BasicAA> {
  friend AnalysisInfoMixin<BasicAA>;
  static AnalysisKey Key;

public:
  typedef BasicAAResult Result;

  BasicAAResult run(Function &F, FunctionAnalysisManager &AM);
};

/// Legacy wrapper pass to provide the BasicAAResult object.
class BasicAAWrapperPass : public FunctionPass {
  std::unique_ptr<BasicAAResult> Result;

  virtual void anchor();

public:
  static char ID;

  BasicAAWrapperPass();

  BasicAAResult &getResult() { return *Result; }
  const BasicAAResult &getResult() const { return *Result; }

  bool runOnFunction(Function &F) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;
};

FunctionPass *createBasicAAWrapperPass();

/// A helper for the legacy pass manager to create a \c BasicAAResult object
/// populated to the best of our ability for a particular function when inside
/// of a \c ModulePass or a \c CallGraphSCCPass.
BasicAAResult createLegacyPMBasicAAResult(Pass &P, Function &F);

/// This class is a functor to be used in legacy module or SCC passes for
/// computing AA results for a function. We store the results in fields so that
/// they live long enough to be queried, but we re-use them each time.
class LegacyAARGetter {
  Pass &P;
  Optional<BasicAAResult> BAR;
  Optional<AAResults> AAR;

public:
  LegacyAARGetter(Pass &P) : P(P) {}
  AAResults &operator()(Function &F) {
    BAR.emplace(createLegacyPMBasicAAResult(P, F));
    AAR.emplace(createLegacyPMAAResults(P, F, *BAR));
    return *AAR;
  }
};

}

#endif