This file is indexed.

/usr/include/wfmath-1.0/wfmath/rotbox.h is in libwfmath-1.0-dev 1.0.2+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
// rotbox.h (A box with arbitrary orientation)
//
//  The WorldForge Project
//  Copyright (C) 2000, 2001  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.
//

// Author: Ron Steinke

#ifndef WFMATH_ROT_BOX_H
#define WFMATH_ROT_BOX_H

#include <wfmath/point.h>
#include <wfmath/rotmatrix.h>
#include <wfmath/intersect_decls.h>

namespace WFMath {

template<int dim>
std::ostream& operator<<(std::ostream& os, const RotBox<dim>& r);
template<int dim>
std::istream& operator>>(std::istream& is, RotBox<dim>& r);

/// A dim dimensional box, lying at an arbitrary angle
/**
 * This class implements the full shape interface, as described in
 * the fake class Shape.
 **/
template<int dim = 3>
class RotBox
{
 public:
  /// construct an uninitialized box
  RotBox() : m_corner0(), m_size(), m_orient() {}
  /// construct a box from the given parameters
  /**
   * p gives corner 0 of the box, size gives the offset from corner
   * 0 to the opposite corner (corner 2^dim - 1), orientation gives
   * the rotation of the box relative to the coordinate axes
   **/
  RotBox(const Point<dim>& p, const Vector<dim>& size,
  const RotMatrix<dim>& orientation) : m_corner0(p), m_size(size),
    m_orient(orientation) {}
  /// construct a copy of the box
  RotBox(const RotBox& b) : m_corner0(b.m_corner0), m_size(b.m_size),
    m_orient(b.m_orient) {}
  /// Construct a rotbox from an object passed by Atlas
  explicit RotBox(const AtlasInType& a);

  ~RotBox() {}

  /// Create an Atlas object from the box
  AtlasOutType toAtlas() const;
  /// Set the box's value to that given by an Atlas object
  void fromAtlas(const AtlasInType& a);

  friend std::ostream& operator<< <dim>(std::ostream& os, const RotBox& r);
  friend std::istream& operator>> <dim>(std::istream& is, RotBox& r);

  RotBox& operator=(const RotBox& s);

  bool isEqualTo(const RotBox& b, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;

  bool operator==(const RotBox& b) const	{return isEqualTo(b);}
  bool operator!=(const RotBox& b) const	{return !isEqualTo(b);}

  bool isValid() const {return m_corner0.isValid() && m_size.isValid()
  && m_orient.isValid();}

  // Descriptive characteristics

  size_t numCorners() const {return 1 << dim;}
  Point<dim> getCorner(size_t i) const;
  Point<dim> getCenter() const {return m_corner0 + Prod(m_size / 2, m_orient);}

  /// returns the base corner of the box
  const Point<dim>& corner0() const		{return m_corner0;}
  /// returns the base corner of the box
  Point<dim>& corner0()				{return m_corner0;}
  /// returns the size of the box
  const Vector<dim>& size() const		{return m_size;}
  /// returns the size of the box
  Vector<dim>& size()				{return m_size;}
  /// returns the orientation of the box
  const RotMatrix<dim>& orientation() const	{return m_orient;}
  /// returns the orientation of the box
  RotMatrix<dim>& orientation()			{return m_orient;}

  // Movement functions

  RotBox& shift(const Vector<dim>& v)
  {m_corner0 += v; return *this;}
  RotBox& moveCornerTo(const Point<dim>& p, size_t corner)
  {return shift(p - getCorner(corner));}
  RotBox& moveCenterTo(const Point<dim>& p)
  {return shift(p - getCenter());}

  RotBox& rotateCorner(const RotMatrix<dim>& m, size_t corner)
  {rotatePoint(m, getCorner(corner)); return *this;}
  RotBox& rotateCenter(const RotMatrix<dim>& m)
  {rotatePoint(m, getCenter()); return *this;}
  RotBox& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p)
  {m_orient = Prod(m_orient, m); m_corner0.rotate(m, p); return *this;}

  // 3D rotation functions
  RotBox& rotateCorner(const Quaternion& q, size_t corner);
  RotBox& rotateCenter(const Quaternion& q);
  RotBox& rotatePoint(const Quaternion& q, const Point<dim>& p);

  // Intersection functions

  AxisBox<dim> boundingBox() const;
  Ball<dim> boundingSphere() const
  {return Ball<dim>(getCenter(), m_size.mag() / 2);}
  Ball<dim> boundingSphereSloppy() const
  {return Ball<dim>(getCenter(), m_size.sqrMag() / 2);}

  RotBox toParentCoords(const Point<dim>& origin,
      const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
        {return RotBox(m_corner0.toParentCoords(origin, rotation), m_size,
    m_orient * rotation);}
  RotBox toParentCoords(const AxisBox<dim>& coords) const
        {return RotBox(m_corner0.toParentCoords(coords), m_size, m_orient);}
  RotBox toParentCoords(const RotBox<dim>& coords) const
        {return RotBox(m_corner0.toParentCoords(coords), m_size,
    m_orient * coords.m_orient);}

  // toLocal is just like toParent, expect we reverse the order of
  // translation and rotation and use the opposite sense of the rotation
  // matrix

  RotBox toLocalCoords(const Point<dim>& origin,
      const RotMatrix<dim>& rotation = RotMatrix<dim>().identity()) const
        {return RotBox(m_corner0.toLocalCoords(origin, rotation), m_size,
    rotation * m_orient);}
  RotBox toLocalCoords(const AxisBox<dim>& coords) const
        {return RotBox(m_corner0.toLocalCoords(coords), m_size, m_orient);}
  RotBox toLocalCoords(const RotBox<dim>& coords) const
        {return RotBox(m_corner0.toLocalCoords(coords), m_size,
    coords.m_orient * m_orient);}

  // 3D only
  RotBox toParentCoords(const Point<dim>& origin, const Quaternion& rotation) const;
  RotBox toLocalCoords(const Point<dim>& origin, const Quaternion& rotation) const;

  friend bool Intersect<dim>(const RotBox& r, const Point<dim>& p, bool proper);
  friend bool Contains<dim>(const Point<dim>& p, const RotBox& r, bool proper);

  friend bool Intersect<dim>(const RotBox& r, const AxisBox<dim>& b, bool proper);
  friend bool Contains<dim>(const RotBox& r, const AxisBox<dim>& b, bool proper);
  friend bool Contains<dim>(const AxisBox<dim>& b, const RotBox& r, bool proper);

  friend bool Intersect<dim>(const RotBox& r, const Ball<dim>& b, bool proper);
  friend bool Contains<dim>(const RotBox& r, const Ball<dim>& b, bool proper);
  friend bool Contains<dim>(const Ball<dim>& b, const RotBox& r, bool proper);

  friend bool Intersect<dim>(const RotBox& r, const Segment<dim>& s, bool proper);
  friend bool Contains<dim>(const RotBox& r, const Segment<dim>& s, bool proper);
  friend bool Contains<dim>(const Segment<dim>& s, const RotBox& r, bool proper);

  friend bool Intersect<dim>(const RotBox& r1, const RotBox& r2, bool proper);
  friend bool Contains<dim>(const RotBox& outer, const RotBox& inner, bool proper);

  friend bool Intersect<dim>(const Polygon<dim>& p, const RotBox& r, bool proper);
  friend bool Contains<dim>(const Polygon<dim>& p, const RotBox& r, bool proper);
  friend bool Contains<dim>(const RotBox& r, const Polygon<dim>& p, bool proper);

 private:

  Point<dim> m_corner0;
  Vector<dim> m_size;
  RotMatrix<dim> m_orient;
};

template<int dim>
inline RotBox<dim>& RotBox<dim>::operator=(const RotBox<dim>& a)
{
  m_corner0 = a.m_corner0;
  m_size = a.m_size;
  m_orient = a.m_orient;

  return *this;
}

template<int dim>
inline bool RotBox<dim>::isEqualTo(const RotBox<dim>& b, CoordType epsilon) const
{
  return Equal(m_corner0, b.m_corner0, epsilon)
      && Equal(m_size, b.m_size, epsilon)
      && Equal(m_orient, b.m_orient, epsilon);
}

} // namespace WFMath

#endif  // WFMATH_ROT_BOX_H