This file is indexed.

/usr/include/wfmath-1.0/wfmath/polygon_funcs.h is in libwfmath-1.0-dev 1.0.2+dfsg1-4.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
// polygon_funcs.h (line polygon implementation)
//
//  The WorldForge Project
//  Copyright (C) 2002  The WorldForge Project
//
//  This program is free software; you can redistribute it and/or modify
//  it under the terms of the GNU General Public License as published by
//  the Free Software Foundation; either version 2 of the License, or
//  (at your option) any later version.
//
//  This program is distributed in the hope that it will be useful,
//  but WITHOUT ANY WARRANTY; without even the implied warranty of
//  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
//  GNU General Public License for more details.
//
//  You should have received a copy of the GNU General Public License
//  along with this program; if not, write to the Free Software
//  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
//  For information about WorldForge and its authors, please contact
//  the Worldforge Web Site at http://www.worldforge.org.
//

// Author: Ron Steinke

#ifndef WFMATH_POLYGON_FUNCS_H
#define WFMATH_POLYGON_FUNCS_H

#include <wfmath/polygon.h>

#include <wfmath/vector.h>
#include <wfmath/point.h>
#include <wfmath/ball.h>

#include <cmath>

#include <cassert>
#include <limits>

namespace WFMath {

template<int dim>
inline _Poly2Orient<dim>& _Poly2Orient<dim>::operator=(const _Poly2Orient<dim>& a)
{
  m_origin = a.m_origin;

  for(int i = 0; i < 2; ++i)
    m_axes[i] = a.m_axes[i];

  return *this;
}

template<int dim>
inline bool Polygon<dim>::isEqualTo(const Polygon<dim>& p, CoordType epsilon) const
{
  // The same polygon can be expressed in different ways in the interal
  // format, so we have to call getCorner();

  size_t size = m_poly.numCorners();
  if(size != p.m_poly.numCorners())
    return false;

  for(size_t i = 0; i < size; ++i)
    if(!Equal(getCorner(i), p.getCorner(i), epsilon))
      return false;

  return true;
}

template<int dim>
inline Point<dim> _Poly2Orient<dim>::convert(const Point<2>& p) const
{
  assert(m_origin.isValid());

  Point<dim> out = m_origin;

  for(int j = 0; j < 2; ++j) {
    if(m_axes[j].isValid())
      out += m_axes[j] * p[j];
    else
      assert(p[j] == 0);
  }

  out.setValid(p.isValid());

  return out;
}

template<int dim>
bool _Poly2Orient<dim>::expand(const Point<dim>& pd, Point<2>& p2, CoordType epsilon)
{
  p2[0] = p2[1] = 0; // initialize
  p2.setValid();

  if(!m_origin.isValid()) { // Adding to an empty list
    m_origin = pd;
    m_origin.setValid();
    return true;
  }

  Vector<dim> shift = pd - m_origin, start_shift = shift;

  CoordType bound = shift.sqrMag() * epsilon;

  int j = 0;

  while(true) {
    if(Dot(shift, start_shift) <= bound) // shift is effectively zero
      return true;

    if(j == 2) { // Have two axes, shift doesn't lie in their plane
      p2.setValid(false);
      return false;
    }

    if(!m_axes[j].isValid()) { // Didn't span this previously, now we do
      p2[j] = shift.mag();
      m_axes[j] = shift / p2[j];
      m_axes[j].setValid();
      return true;
   }

   p2[j] = Dot(shift, m_axes[j]);
   shift -= m_axes[j] * p2[j]; // shift is now perpendicular to m_axes[j]
   ++j;
  }
}

template<int dim>
_Poly2Reorient _Poly2Orient<dim>::reduce(const Polygon<2>& poly, size_t skip)
{
  if(poly.numCorners() <= ((skip == 0) ? 1 : 0)) { // No corners left
    m_origin.setValid(false);
    m_axes[0].setValid(false);
    m_axes[1].setValid(false);
    return _WFMATH_POLY2REORIENT_NONE;
  }

  assert(m_origin.isValid());

  if(!m_axes[0].isValid())
    return _WFMATH_POLY2REORIENT_NONE;

  // Check that we still span both axes

  bool still_valid[2] = {false,}, got_ratio = false;
  CoordType ratio = std::numeric_limits<CoordType>::max();
  CoordType size = std::numeric_limits<CoordType>::max();
  CoordType epsilon;
  size_t i, end = poly.numCorners();

  // scale epsilon
  for(i = 0; i < end; ++i) {
    if(i == skip)
      continue;
    const Point<2> &p = poly[i];
    CoordType x = std::fabs(p[0]),
              y = std::fabs(p[1]),
              max = (x > y) ? x : y;
    if(i == 0 || max < size)
      size = max;
  }
  int exponent;
  (void) std::frexp(size, &exponent);
  epsilon = std::ldexp(numeric_constants<CoordType>::epsilon(), exponent);

  i = 0;
  if(skip == 0)
    ++i;
  assert(i != end);
  Point<2> first_point = poly[i];
  first_point.setValid(); // in case someone stuck invalid points in the poly

  while(++i != end) {
    if(i == skip)
      continue;

    Vector<2> diff = poly[i] - first_point;
    if(diff.sqrMag() < epsilon * epsilon) // No addition to span
      continue;
    if(!m_axes[1].isValid()) // We span 1D
      return _WFMATH_POLY2REORIENT_NONE;
    for(int j = 0; j < 2; ++j) {
      if(std::fabs(diff[j]) < epsilon) {
        assert(diff[j ? 0 : 1] >= epsilon); // because diff != 0
        if(still_valid[j ? 0 : 1] || got_ratio) // We span a 2D space
          return _WFMATH_POLY2REORIENT_NONE;
        still_valid[j] = true;
      }
    }
    // The point has both elements nonzero
    if(still_valid[0] || still_valid[1]) // We span a 2D space
      return _WFMATH_POLY2REORIENT_NONE;
    CoordType new_ratio = diff[1] / diff[0];
    if(!got_ratio) {
      ratio = new_ratio;
      got_ratio = true;
      continue;
    }
    if(!Equal(ratio, new_ratio)) // We span a 2D space
      return _WFMATH_POLY2REORIENT_NONE;
  }

  // Okay, we don't span both vectors. What now?

  if(still_valid[0]) {
    assert(m_axes[1].isValid());
    assert(!still_valid[1]);
    assert(!got_ratio);
    // This is easy, m_axes[1] is just invalid
    m_origin += m_axes[1] * first_point[1];
    m_axes[1].setValid(false);
    return _WFMATH_POLY2REORIENT_CLEAR_AXIS2;
  }

  if(still_valid[1]) {
    assert(m_axes[1].isValid());
    assert(!got_ratio);
    // This is a little harder, m_axes[0] is invalid, must swap axes
    m_origin += m_axes[0] * first_point[0];
    m_axes[0] = m_axes[1];
    m_axes[1].setValid(false);
    return _WFMATH_POLY2REORIENT_MOVE_AXIS2_TO_AXIS1;
  }

  // The !m_axes[1].isValid() case reducing to a point falls into here
  if(!got_ratio) { // Nothing's valid, all points are equal
    m_origin += m_axes[0] * first_point[0];
    if(m_axes[1].isValid())
      m_origin += m_axes[1] * first_point[1];
    m_axes[0].setValid(false);
    m_axes[1].setValid(false);
    return _WFMATH_POLY2REORIENT_CLEAR_BOTH_AXES;
  }

  assert(m_axes[1].isValid());

  // All the points are colinear, along some line which is not parallel
  // to either of the original axes

  Vector<dim> new0;
  new0 = m_axes[0] + m_axes[1] * ratio;
  CoordType norm = new0.mag();
  new0 /= norm;

//  Vector diff = m_axes[0] * first_point[0] + m_axes[1] * first_point[1];
//  // Causes Dot(diff, m_axes[0]) to vanish, so the point on the line
//  // with x coordinate zero is the new origin
//  diff -= new0 * (first_point[0] * norm);
//  m_origin += diff;
  // or, equivalently
    m_origin += m_axes[1] * (first_point[1] - ratio * first_point[0]);

  m_axes[0] = new0;
  m_axes[1].setValid(false);
  return _Poly2Reorient(_WFMATH_POLY2REORIENT_SCALE1_CLEAR2, norm);
}

template<int dim>
inline void _Poly2Orient<dim>::rotate(const RotMatrix<dim>& m, const Point<dim>& p)
{
  m_origin.rotate(m, p);

  for(int j = 0; j < 2; ++j)
    m_axes[j] = Prod(m_axes[j], m);
}

template<int dim>
void _Poly2Orient<dim>::rotate2(const RotMatrix<dim>& m, const Point<2>& p)
{
  assert(m_origin.isValid());

  if(!m_axes[0].isValid()) {
    assert(p[0] == 0 && p[1] == 0);
    return;
  }

  Vector<dim> shift = m_axes[0] * p[0];
  m_axes[0] = Prod(m_axes[0], m);

  if(m_axes[1].isValid()) {
    shift += m_axes[1] * p[1];
    m_axes[1] = Prod(m_axes[1], m);
  }
  else
    assert(p[1] == 0);

  m_origin += shift - Prod(shift, m);
}

template<>
inline void _Poly2Orient<3>::rotate(const Quaternion& q, const Point<3>& p)
{
  m_origin.rotate(q, p);

  for(int j = 0; j < 2; ++j)
    m_axes[j].rotate(q);
}

template<>
inline void _Poly2Orient<3>::rotate2(const Quaternion& q, const Point<2>& p)
{
  assert(m_origin.isValid());

  if(!m_axes[0].isValid()) {
    assert(p[0] == 0 && p[1] == 0);
    return;
  }

  Vector<3> shift = m_axes[0] * p[0];
  m_axes[0].rotate(q);

  if(m_axes[1].isValid()) {
    shift += m_axes[1] * p[1];
    m_axes[1].rotate(q);
  }
  else
    assert(p[1] == 0);

  m_origin += shift - shift.rotate(q);
}

template<int dim>
AxisBox<dim> Polygon<dim>::boundingBox() const
{
  assert(m_poly.numCorners() > 0);

  Point<dim> min = m_orient.convert(m_poly[0]), max = min;
  bool valid = min.isValid();

  for(size_t i = 1; i != m_poly.numCorners(); ++i) {
    Point<dim> p = m_orient.convert(m_poly[i]);
    valid = valid && p.isValid();
    for(int j = 0; j < dim; ++j) {
      if(p[j] < min[j])
        min[j] = p[j];
      if(p[j] > max[j])
        max[j] = p[j];
    }
  }

  min.setValid(valid);
  max.setValid(valid);

  return AxisBox<dim>(min, max, true);
}

template<int dim>
inline Ball<dim> Polygon<dim>::boundingSphere() const
{
  Ball<2> b = m_poly.boundingSphere();

  return Ball<dim>(m_orient.convert(b.center()), b.radius());
}

template<int dim>
inline Ball<dim> Polygon<dim>::boundingSphereSloppy() const
{
  Ball<2> b = m_poly.boundingSphereSloppy();

  return Ball<dim>(m_orient.convert(b.center()), b.radius());
}

} // namespace WFMath

#endif  // WFMATH_POLYGON_FUNCS_H