/usr/include/wfmath-1.0/wfmath/line.h is in libwfmath-1.0-dev 1.0.2+dfsg1-4.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 | // line.h (A segmented line in n-dimensional space)
//
// The WorldForge Project
// Copyright (C) 2012 The WorldForge Project
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
//
// For information about WorldForge and its authors, please contact
// the Worldforge Web Site at http://www.worldforge.org.
//
// Author: Ron Steinke
#ifndef WFMATH_LINE_H
#define WFMATH_LINE_H
#include <wfmath/const.h>
#include <wfmath/point.h>
#include <vector>
namespace WFMath {
/// A dim dimensional line
/**
* This class implements the full shape interface, as described in
* the fake class Shape.
**/
template<int dim = 3>
class Line
{
public:
///
Line() : m_points() {}
///
Line(const Line<dim>& l) : m_points(l.m_points) {}
///
explicit Line(const AtlasInType& a);
///
~Line() {}
/// Create an Atlas object from the line
AtlasOutType toAtlas() const;
/// Set the line's value to that given by an Atlas object
void fromAtlas(const AtlasInType& a);
///
Line& operator=(const Line& a);
/// generic: check if two classes are equal, up to a given tolerance
bool isEqualTo(const Line& s, CoordType epsilon = numeric_constants<CoordType>::epsilon()) const;
/// generic: check if two classes are equal, up to tolerance WFMATH_EPSILON
bool operator==(const Line& s) const {return isEqualTo(s);}
/// generic: check if two classes are not equal, up to tolerance WFMATH_EPSILON
bool operator!=(const Line& s) const {return !isEqualTo(s);}
/// generic: returns true if the class instance has been initialized
bool isValid() const {return m_points.size() > 1;}
// Now we begin with the functions in the shape interface
// Descriptive characteristics
/// shape: return the number of corners in the shape.
/**
* For many shape classes, this is a fixed constant
**/
size_t numCorners() const {return m_points.size();}
/// shape: return the position of the i'th corner, where 0 <= i < numCorners()
Point<dim> getCorner(size_t i) const {return m_points[i];}
/// shape: return the position of the center of the shape
Point<dim> getCenter() const {return Barycenter(m_points);}
// Add before i'th corner, zero is beginning, numCorners() is end
bool addCorner(size_t i, const Point<dim>& p, CoordType = numeric_constants<CoordType>::epsilon())
{m_points.insert(m_points.begin() + i, p); return true;}
// Remove the i'th corner
void removeCorner(size_t i) {m_points.erase(m_points.begin() + i);}
bool moveCorner(size_t i,
const Point<dim>& p,
CoordType = numeric_constants<CoordType>::epsilon())
{m_points[i] = p; return true;}
// Movement functions
/// shape: move the shape by an amount given by the Vector v
Line& shift(const Vector<dim>& v); // Move the shape a certain distance
/// shape: move the shape, moving the given corner to the Point p
/**
* The corner in question is getCorner(corner).
**/
Line& moveCornerTo(const Point<dim>& p, size_t corner)
{return shift(p - getCorner(corner));}
/// shape: move the shape, moving the center to the Point p
/**
* The center is defined by getCenter()
**/
Line& moveCenterTo(const Point<dim>& p)
{return shift(p - getCenter());}
/// shape: rotate the shape while holding the given corner fixed
/**
* The corner in question is getCorner(corner).
**/
Line& rotateCorner(const RotMatrix<dim>& m, size_t corner)
{return rotatePoint(m, getCorner(corner));}
/// shape: rotate the shape while holding the center fixed
/**
* The center is defined by getCenter()
**/
Line& rotateCenter(const RotMatrix<dim>& m)
{return rotatePoint(m, getCenter());}
/// shape: rotate the shape while holding the Point p fixed.
/**
* Note that p can be any Point, it does not have to lie within
* the shape.
**/
Line& rotatePoint(const RotMatrix<dim>& m, const Point<dim>& p);
AxisBox<dim> boundingBox() const {return BoundingBox(m_points);}
Ball<dim> boundingSphere() const {return BoundingSphere(m_points);}
Ball<dim> boundingSphereSloppy() const {return BoundingSphereSloppy(m_points);}
private:
std::vector<Point<dim> > m_points;
typedef typename std::vector<Point<dim> >::iterator iterator;
typedef typename std::vector<Point<dim> >::const_iterator const_iterator;
typedef typename std::vector<Point<dim> >::size_type size_type;
};
template<int dim>
inline Line<dim>& Line<dim>::operator=(const Line& rhs)
{
m_points = rhs.m_points;
return *this;
}
} // namespace WFMath
#endif // WFMATH_LINE_H
|