/usr/include/vtk-7.1/vtkdiy/master.hpp is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 | #ifndef DIY_MASTER_HPP
#define DIY_MASTER_HPP
#include <vector>
#include <map>
#include <list>
#include <deque>
#include <algorithm>
#include "link.hpp"
#include "collection.hpp"
// Communicator functionality
#include "mpi.hpp"
#include "serialization.hpp"
#include "detail/collectives.hpp"
#include "time.hpp"
#include "thread.hpp"
namespace diy
{
// Stores and manages blocks; initiates serialization and communication when necessary.
//
// Provides a foreach function, which is meant as the main entry point.
//
// Provides a conversion between global and local block ids,
// which is hidden from blocks via a communicator proxy.
class Master
{
public:
struct ProcessBlock;
template<class Block>
struct Binder;
// Commands
struct BaseCommand;
template<class Block, class Functor, class Skip>
struct Command;
typedef std::vector<BaseCommand*> Commands;
// Skip
struct SkipNoIncoming;
struct NeverSkip { bool operator()(int i, const Master& master) const { return false; } };
// Collection
typedef Collection::Create CreateBlock;
typedef Collection::Destroy DestroyBlock;
typedef Collection::Save SaveBlock;
typedef Collection::Load LoadBlock;
public:
// Communicator types
struct Proxy;
struct ProxyWithLink;
struct QueuePolicy
{
virtual bool unload_incoming(const Master& master, int from, int to, size_t size) const =0;
virtual bool unload_outgoing(const Master& master, int from, size_t size) const =0;
virtual ~QueuePolicy() {}
};
//! Move queues out of core if their size exceeds a parameter given in the constructor
struct QueueSizePolicy: public QueuePolicy
{
QueueSizePolicy(size_t sz): size(sz) {}
bool unload_incoming(const Master& master, int from, int to, size_t sz) const { return sz > size; }
bool unload_outgoing(const Master& master, int from, size_t sz) const { return sz > size*master.outgoing_count(from); }
size_t size;
};
struct InFlight
{
MemoryBuffer message;
mpi::request request;
// for debug purposes:
int from, to;
};
struct Collective;
struct tags { enum { queue }; };
typedef std::list<InFlight> InFlightList;
typedef std::list<int> ToSendList; // [gid]
typedef std::list<Collective> CollectivesList;
typedef std::map<int, CollectivesList> CollectivesMap; // gid -> [collectives]
struct QueueRecord
{
QueueRecord(size_t s = 0, int e = -1): size(s), external(e) {}
size_t size;
int external;
};
typedef std::map<int, QueueRecord> InQueueRecords; // gid -> (size, external)
typedef std::map<int, MemoryBuffer> IncomingQueues; // gid -> queue
typedef std::map<BlockID, MemoryBuffer> OutgoingQueues; // (gid, proc) -> queue
typedef std::map<BlockID, QueueRecord> OutQueueRecords; // (gid, proc) -> (size, external)
struct IncomingQueuesRecords
{
InQueueRecords records;
IncomingQueues queues;
};
struct OutgoingQueuesRecord
{
OutgoingQueuesRecord(int e = -1): external(e) {}
int external;
OutQueueRecords external_local;
OutgoingQueues queues;
};
typedef std::map<int, IncomingQueuesRecords> IncomingQueuesMap; // gid -> { gid -> queue }
typedef std::map<int, OutgoingQueuesRecord> OutgoingQueuesMap; // gid -> { (gid,proc) -> queue }
public:
/**
* \ingroup Initialization
* \brief The main DIY object
*
* Helper functions specify how to:
* create an empty block,
* destroy a block (a function that's expected to upcast and delete),
* serialize a block
*/
Master(mpi::communicator comm, //!< communicator
int threads = 1, //!< number of threads DIY can use
int limit = -1, //!< number of blocks to store in memory
CreateBlock create = 0, //!< block create function; master manages creation if create != 0
DestroyBlock destroy = 0, //!< block destroy function; master manages destruction if destroy != 0
ExternalStorage* storage = 0, //!< storage object (path, method, etc.) for storing temporary blocks being shuffled in/out of core
SaveBlock save = 0, //!< block save function; master manages saving if save != 0
LoadBlock load = 0, //!< block load function; master manages loading if load != 0
QueuePolicy* q_policy = new QueueSizePolicy(4096)): //!< policy for managing message queues specifies maximum size of message queues to keep in memory
blocks_(create, destroy, storage, save, load),
queue_policy_(q_policy),
limit_(limit),
threads_(threads == -1 ? thread::hardware_concurrency() : threads),
storage_(storage),
// Communicator functionality
comm_(comm),
inflight_size_(0),
expected_(0),
received_(0),
immediate_(true)
{}
~Master() { set_immediate(true); clear(); delete queue_policy_; }
inline void clear();
inline void destroy(int i) { if (blocks_.own()) blocks_.destroy(i); }
inline int add(int gid, void* b, Link* l); //!< add a block
inline void* release(int i); //!< release ownership of the block
//!< return the `i`-th block
inline void* block(int i) const { return blocks_.find(i); }
template<class Block>
Block* block(int i) const { return static_cast<Block*>(block(i)); }
inline Link* link(int i) const { return links_[i]; }
inline int loaded_block() const { return blocks_.available(); }
inline void unload(int i);
inline void load(int i);
void unload(std::vector<int>& loaded) { for(unsigned i = 0; i < loaded.size(); ++i) unload(loaded[i]); loaded.clear(); }
void unload_all() { for(unsigned i = 0; i < size(); ++i) if (block(i) != 0) unload(i); }
inline bool has_incoming(int i) const;
inline void unload_queues(int i);
inline void unload_incoming(int gid);
inline void unload_outgoing(int gid);
inline void load_queues(int i);
inline void load_incoming(int gid);
inline void load_outgoing(int gid);
//! return the MPI communicator
const mpi::communicator& communicator() const { return comm_; }
//! return the MPI communicator
mpi::communicator& communicator() { return comm_; }
//! return the `i`-th block, loading it if necessary
void* get(int i) { return blocks_.get(i); }
//! return gid of the `i`-th block
int gid(int i) const { return gids_[i]; }
//! return the local id of the local block with global id gid, or -1 if not local
int lid(int gid) const { return local(gid) ? lids_.find(gid)->second : -1; }
//! whether the block with global id gid is local
bool local(int gid) const { return lids_.find(gid) != lids_.end(); }
//! exchange the queues between all the blocks (collective operation)
inline void exchange();
inline void process_collectives();
inline
ProxyWithLink proxy(int i) const;
//! return the number of local blocks
unsigned size() const { return blocks_.size(); }
void* create() const { return blocks_.create(); }
// accessors
int limit() const { return limit_; }
int threads() const { return threads_; }
int in_memory() const { return *blocks_.in_memory().const_access(); }
void set_threads(int threads) { threads_ = threads; }
CreateBlock creator() const { return blocks_.creator(); }
DestroyBlock destroyer() const { return blocks_.destroyer(); }
LoadBlock loader() const { return blocks_.loader(); }
SaveBlock saver() const { return blocks_.saver(); }
//! call `f` with every block
template<class Functor>
void foreach(const Functor& f) { foreach<void>(f); }
template<class Block, class Functor>
void foreach(const Functor& f) { foreach<Block>(f, (void*) 0); }
template<class Functor, class T>
void foreach(const Functor& f, T* aux) { foreach<void>(f, aux); }
template<class Block, class Functor, class T>
void foreach(const Functor& f, T* aux) { foreach<Block>(f, NeverSkip(), aux); }
template<class Functor, class Skip>
void foreach(const Functor& f, const Skip& skip, void* aux = 0) { foreach<void>(f,skip,aux); }
template<class Block, class Functor, class Skip>
void foreach(const Functor& f, const Skip& skip, void* aux = 0);
// calls to member functions
template<class Block>
void foreach(void (Block::*f)(const ProxyWithLink&, void*)) { foreach<Block>(f, (void*) 0); }
template<class Block, class T>
void foreach(void (Block::*f)(const ProxyWithLink&, void*), T* aux) { foreach<Block>(f, NeverSkip(), aux); }
template<class Block, class Skip>
void foreach(void (Block::*f)(const ProxyWithLink&, void*), const Skip& skip, void* aux = 0) { foreach<Block>(Binder<Block>(f), skip, aux); }
inline void execute();
bool immediate() const { return immediate_; }
void set_immediate(bool i) { if (i && !immediate_) execute(); immediate_ = i; }
public:
// Communicator functionality
IncomingQueues& incoming(int gid) { return incoming_[gid].queues; }
OutgoingQueues& outgoing(int gid) { return outgoing_[gid].queues; }
CollectivesList& collectives(int gid) { return collectives_[gid]; }
size_t incoming_count(int gid) const { IncomingQueuesMap::const_iterator it = incoming_.find(gid); if (it == incoming_.end()) return 0; return it->second.queues.size(); }
size_t outgoing_count(int gid) const { OutgoingQueuesMap::const_iterator it = outgoing_.find(gid); if (it == outgoing_.end()) return 0; return it->second.queues.size(); }
void set_expected(int expected) { expected_ = expected; }
void add_expected(int i) { expected_ += i; }
int expected() const { return expected_; }
void replace_link(int i, Link* link) { expected_ -= links_[i]->size_unique(); delete links_[i]; links_[i] = link; expected_ += links_[i]->size_unique(); }
public:
// Communicator functionality
inline void flush(); // makes sure all the serialized queues migrate to their target processors
private:
// Communicator functionality
inline void comm_exchange(ToSendList& to_send, int out_queues_limit); // possibly called in between block computations
inline bool nudge();
void cancel_requests(); // TODO
// debug
inline void show_incoming_records() const;
private:
std::vector<Link*> links_;
Collection blocks_;
std::vector<int> gids_;
std::map<int, int> lids_;
QueuePolicy* queue_policy_;
int limit_;
int threads_;
ExternalStorage* storage_;
private:
// Communicator
mpi::communicator comm_;
IncomingQueuesMap incoming_;
OutgoingQueuesMap outgoing_;
InFlightList inflight_;
size_t inflight_size_;
CollectivesMap collectives_;
int expected_;
int received_;
bool immediate_;
Commands commands_;
private:
fast_mutex add_mutex_;
};
struct Master::BaseCommand
{
virtual ~BaseCommand() {} // to delete derived classes
virtual void execute(void* b, const ProxyWithLink& cp) const =0;
virtual bool skip(int i, const Master& master) const =0;
};
template<class Block, class Functor, class Skip>
struct Master::Command: public BaseCommand
{
Command(const Functor& f_, const Skip& s_, void* aux_):
f(f_), s(s_), aux(aux_) {}
void execute(void* b, const ProxyWithLink& cp) const { f(static_cast<Block*>(b), cp, aux); }
bool skip(int i, const Master& m) const { return s(i,m); }
Functor f;
Skip s;
void* aux;
};
template<class Block>
struct Master::Binder
{
typedef void (Block::*MemberFn)(const ProxyWithLink&, void*);
Binder(MemberFn f): f_(f) {}
void operator()(Block* b, const ProxyWithLink& cp, void* aux) const { if (b) (b->*f_)(cp, aux); }
MemberFn f_;
};
struct Master::SkipNoIncoming
{ bool operator()(int i, const Master& master) const { return !master.has_incoming(i); } };
struct Master::Collective
{
Collective():
cop_(0) {}
Collective(detail::CollectiveOp* cop):
cop_(cop) {}
// this copy constructor is very ugly, but need it to insert Collectives into a list
Collective(const Collective& other):
cop_(0) { swap(const_cast<Collective&>(other)); }
~Collective() { delete cop_; }
void init() { cop_->init(); }
void swap(Collective& other) { std::swap(cop_, other.cop_); }
void update(const Collective& other) { cop_->update(*other.cop_); }
void global(const mpi::communicator& c) { cop_->global(c); }
void copy_from(Collective& other) const { cop_->copy_from(*other.cop_); }
void result_out(void* x) const { cop_->result_out(x); }
detail::CollectiveOp* cop_;
private:
Collective& operator=(const Collective& other);
};
}
#include "proxy.hpp"
// --- ProcessBlock ---
struct diy::Master::ProcessBlock
{
ProcessBlock(Master& master_,
const std::deque<int>& blocks_,
int local_limit_,
critical_resource<int>& idx_):
master(master_),
blocks(blocks_),
local_limit(local_limit_),
idx(idx_)
{}
void process()
{
//fprintf(stderr, "Processing with thread: %d\n", (int) this_thread::get_id());
std::vector<int> local;
do
{
int cur = (*idx.access())++;
if ((size_t)cur >= blocks.size())
return;
int i = blocks[cur];
if (master.block(i))
{
if (local.size() == (size_t)local_limit)
master.unload(local);
local.push_back(i);
}
//fprintf(stderr, "Processing block: %d\n", master.gid(i));
bool skip_block = true;
for (size_t cmd = 0; cmd < master.commands_.size(); ++cmd)
{
if (!master.commands_[cmd]->skip(i, master))
{
skip_block = false;
break;
}
}
if (skip_block)
{
if (master.block(i) == 0)
master.load_queues(i); // even though we are skipping the block, the queues might be necessary
for (size_t cmd = 0; cmd < master.commands_.size(); ++cmd)
{
master.commands_[cmd]->execute(0, master.proxy(i)); // 0 signals that we are skipping the block (even if it's loaded)
// no longer need them, so get rid of them, rather than risk reloading
master.incoming_[master.gid(i)].queues.clear();
master.incoming_[master.gid(i)].records.clear();
}
if (master.block(i) == 0)
master.unload_queues(i); // even though we are skipping the block, the queues might be necessary
}
else
{
if (master.block(i) == 0) // block unloaded
{
if (local.size() == (size_t)local_limit) // reached the local limit
master.unload(local);
master.load(i);
local.push_back(i);
}
for (size_t cmd = 0; cmd < master.commands_.size(); ++cmd)
{
master.commands_[cmd]->execute(master.block(i), master.proxy(i));
// no longer need them, so get rid of them
master.incoming_[master.gid(i)].queues.clear();
master.incoming_[master.gid(i)].records.clear();
}
}
} while(true);
// TODO: invoke opportunistic communication
// don't forget to adjust Master::exchange()
}
static void run(void* bf) { static_cast<ProcessBlock*>(bf)->process(); }
Master& master;
const std::deque<int>& blocks;
int local_limit;
critical_resource<int>& idx;
};
// --------------------
void
diy::Master::
clear()
{
for (unsigned i = 0; i < size(); ++i)
delete links_[i];
blocks_.clear();
links_.clear();
gids_.clear();
lids_.clear();
expected_ = 0;
}
void
diy::Master::
unload(int i)
{
//fprintf(stdout, "Unloading block: %d\n", gid(i));
blocks_.unload(i);
unload_queues(i);
}
void
diy::Master::
unload_queues(int i)
{
unload_incoming(gid(i));
unload_outgoing(gid(i));
}
void
diy::Master::
unload_incoming(int gid)
{
IncomingQueuesRecords& in_qrs = incoming_[gid];
for (InQueueRecords::iterator it = in_qrs.records.begin(); it != in_qrs.records.end(); ++it)
{
QueueRecord& qr = it->second;
if (queue_policy_->unload_incoming(*this, it->first, gid, qr.size))
{
//fprintf(stderr, "Unloading queue: %d <- %d\n", gid, it->first);
qr.external = storage_->put(in_qrs.queues[it->first]);
}
}
}
void
diy::Master::
unload_outgoing(int gid)
{
OutgoingQueuesRecord& out_qr = outgoing_[gid];
size_t out_queues_size = sizeof(size_t); // map size
size_t count = 0;
for (OutgoingQueues::iterator it = out_qr.queues.begin(); it != out_qr.queues.end(); ++it)
{
if (it->first.proc == comm_.rank()) continue;
out_queues_size += sizeof(BlockID); // target
out_queues_size += sizeof(size_t); // buffer.position
out_queues_size += sizeof(size_t); // buffer.size
out_queues_size += it->second.size(); // buffer contents
++count;
}
if (queue_policy_->unload_outgoing(*this, gid, out_queues_size - sizeof(size_t)))
{
//fprintf(stderr, "Unloading outgoing queues: %d -> ...; size = %lu\n", gid, out_queues_size);
MemoryBuffer bb; bb.reserve(out_queues_size);
diy::save(bb, count);
for (OutgoingQueues::iterator it = out_qr.queues.begin(); it != out_qr.queues.end();)
{
if (it->first.proc == comm_.rank())
{
// treat as incoming
if (queue_policy_->unload_incoming(*this, gid, it->first.gid, it->second.size()))
{
QueueRecord& qr = out_qr.external_local[it->first];
qr.size = it->second.size();
qr.external = storage_->put(it->second);
out_qr.queues.erase(it++);
continue;
} // else keep in memory
} else
{
diy::save(bb, it->first);
diy::save(bb, it->second);
out_qr.queues.erase(it++);
continue;
}
++it;
}
// TODO: this mechanism could be adjusted for direct saving to disk
// (without intermediate binary buffer serialization)
out_qr.external = storage_->put(bb);
}
}
void
diy::Master::
load(int i)
{
//fprintf(stdout, "Loading block: %d\n", gid(i));
blocks_.load(i);
load_queues(i);
}
void
diy::Master::
load_queues(int i)
{
load_incoming(gid(i));
load_outgoing(gid(i));
}
void
diy::Master::
load_incoming(int gid)
{
IncomingQueuesRecords& in_qrs = incoming_[gid];
for (InQueueRecords::iterator it = in_qrs.records.begin(); it != in_qrs.records.end(); ++it)
{
QueueRecord& qr = it->second;
if (qr.external != -1)
{
//fprintf(stderr, "Loading queue: %d <- %d\n", gid, it->first);
storage_->get(qr.external, in_qrs.queues[it->first]);
qr.external = -1;
}
}
}
void
diy::Master::
load_outgoing(int gid)
{
// TODO: we could adjust this mechanism to read directly from storage,
// bypassing an intermediate MemoryBuffer
OutgoingQueuesRecord& out_qr = outgoing_[gid];
if (out_qr.external != -1)
{
MemoryBuffer bb;
storage_->get(out_qr.external, bb);
out_qr.external = -1;
size_t count;
diy::load(bb, count);
for (size_t i = 0; i < count; ++i)
{
BlockID to;
diy::load(bb, to);
diy::load(bb, out_qr.queues[to]);
}
}
}
diy::Master::ProxyWithLink
diy::Master::
proxy(int i) const
{ return ProxyWithLink(Proxy(const_cast<Master*>(this), gid(i)), block(i), link(i)); }
int
diy::Master::
add(int gid, void* b, Link* l)
{
if (*blocks_.in_memory().const_access() == limit_)
unload_all();
lock_guard<fast_mutex> lock(add_mutex_); // allow to add blocks from multiple threads
blocks_.add(b);
links_.push_back(l);
gids_.push_back(gid);
int lid = gids_.size() - 1;
lids_[gid] = lid;
add_expected(l->size_unique()); // NB: at every iteration we expect a message from each unique neighbor
return lid;
}
void*
diy::Master::
release(int i)
{
void* b = blocks_.release(i);
delete link(i); links_[i] = 0;
lids_.erase(gid(i));
return b;
}
bool
diy::Master::
has_incoming(int i) const
{
const IncomingQueuesRecords& in_qrs = const_cast<Master&>(*this).incoming_[gid(i)];
for (InQueueRecords::const_iterator it = in_qrs.records.begin(); it != in_qrs.records.end(); ++it)
{
const QueueRecord& qr = it->second;
if (qr.size != 0)
return true;
}
return false;
}
template<class Block, class Functor, class Skip>
void
diy::Master::
foreach(const Functor& f, const Skip& skip, void* aux)
{
commands_.push_back(new Command<Block, Functor, Skip>(f, skip, aux));
if (immediate())
execute();
}
void
diy::Master::
execute()
{
//fprintf(stderr, "Entered execute()\n");
//show_incoming_records();
// touch the outgoing and incoming queues as well as collectives to make sure they exist
for (unsigned i = 0; i < size(); ++i)
{
outgoing(gid(i));
incoming(gid(i)); // implicitly touches queue records
collectives(gid(i));
}
if (commands_.empty())
return;
// Order the blocks, so the loaded ones come first
std::deque<int> blocks;
for (unsigned i = 0; i < size(); ++i)
if (block(i) == 0)
blocks.push_back(i);
else
blocks.push_front(i);
// don't use more threads than we can have blocks in memory
int num_threads;
int blocks_per_thread;
if (limit_ == -1)
{
num_threads = threads_;
blocks_per_thread = size();
}
else
{
num_threads = std::min(threads_, limit_);
blocks_per_thread = limit_/num_threads;
}
// idx is shared
critical_resource<int> idx(0);
typedef ProcessBlock BlockFunctor;
if (num_threads > 1)
{
// launch the threads
typedef std::pair<thread*, BlockFunctor*> ThreadFunctorPair;
typedef std::list<ThreadFunctorPair> ThreadFunctorList;
ThreadFunctorList threads;
for (unsigned i = 0; i < (unsigned)num_threads; ++i)
{
BlockFunctor* bf = new BlockFunctor(*this, blocks, blocks_per_thread, idx);
threads.push_back(ThreadFunctorPair(new thread(&BlockFunctor::run, bf), bf));
}
// join the threads
for(ThreadFunctorList::iterator it = threads.begin(); it != threads.end(); ++it)
{
thread* t = it->first;
BlockFunctor* bf = it->second;
t->join();
delete t;
delete bf;
}
} else
{
BlockFunctor bf(*this, blocks, blocks_per_thread, idx);
BlockFunctor::run(&bf);
}
// clear incoming queues
incoming_.clear();
if (limit() != -1 && in_memory() > limit())
{
fprintf(stderr, "Fatal: %d blocks in memory, with limit %d\n", in_memory(), limit());
std::abort();
}
// clear commands
for (size_t i = 0; i < commands_.size(); ++i)
delete commands_[i];
commands_.clear();
}
void
diy::Master::
exchange()
{
execute();
//fprintf(stdout, "Starting exchange\n");
// make sure there is a queue for each neighbor
for (int i = 0; i < (int)size(); ++i)
{
OutgoingQueues& outgoing_queues = outgoing_[gid(i)].queues;
OutQueueRecords& external_local = outgoing_[gid(i)].external_local;
if (outgoing_queues.size() < (size_t)link(i)->size())
for (unsigned j = 0; j < (unsigned)link(i)->size(); ++j)
{
if (external_local.find(link(i)->target(j)) == external_local.end())
outgoing_queues[link(i)->target(j)]; // touch the outgoing queue, creating it if necessary
}
}
flush();
//fprintf(stdout, "Finished exchange\n");
}
/* Communicator */
void
diy::Master::
comm_exchange(ToSendList& to_send, int out_queues_limit)
{
// isend outgoing queues, up to the out_queues_limit
while(inflight_size_ < (size_t)out_queues_limit && !to_send.empty())
{
int from = to_send.front();
// deal with external_local queues
for (OutQueueRecords::iterator it = outgoing_[from].external_local.begin(); it != outgoing_[from].external_local.end(); ++it)
{
int to = it->first.gid;
//fprintf(stderr, "Processing local queue: %d <- %d\n", to, from);
//fprintf(stderr, " size: %lu\n", it->second.size);
QueueRecord& in_qr = incoming_[to].records[from];
bool in_external = block(lid(to)) == 0;
if (in_external)
in_qr = it->second;
else
{
// load the queue
in_qr.size = it->second.size;
in_qr.external = -1;
MemoryBuffer bb;
storage_->get(it->second.external, bb);
incoming_[to].queues[from].swap(bb);
}
++received_;
}
outgoing_[from].external_local.clear();
if (outgoing_[from].external != -1)
load_outgoing(from);
to_send.pop_front();
OutgoingQueues& outgoing = outgoing_[from].queues;
for (OutgoingQueues::iterator it = outgoing.begin(); it != outgoing.end(); ++it)
{
BlockID to_proc = it->first;
int to = to_proc.gid;
int proc = to_proc.proc;
//fprintf(stderr, "Processing queue: %d <- %d\n", to, from);
//fprintf(stderr, " size: %lu\n", outgoing_[from].queues[to_proc].size());
// There may be local outgoing queues that remained in memory
if (proc == comm_.rank()) // sending to ourselves: simply swap buffers
{
//fprintf(stderr, "Moving queue in-place: %d <- %d\n", to, from);
QueueRecord& in_qr = incoming_[to].records[from];
bool in_external = block(lid(to)) == 0;
if (in_external)
{
//fprintf(stderr, "Unloading outgoing directly as incoming: %d <- %d\n", to, from);
MemoryBuffer& bb = it->second;
in_qr.size = bb.size();
if (queue_policy_->unload_incoming(*this, from, to, in_qr.size))
in_qr.external = storage_->put(bb);
else
{
MemoryBuffer& in_bb = incoming_[to].queues[from];
in_bb.swap(bb);
in_bb.reset();
in_qr.external = -1;
}
} else // !in_external
{
//fprintf(stderr, "Swapping in memory: %d <- %d\n", to, from);
MemoryBuffer& bb = incoming_[to].queues[from];
bb.swap(it->second);
bb.reset();
in_qr.size = bb.size();
in_qr.external = -1;
}
++received_;
continue;
}
inflight_.push_back(InFlight()); ++inflight_size_;
inflight_.back().from = from;
inflight_.back().to = to;
MemoryBuffer& bb = inflight_.back().message;
bb.swap(it->second);
diy::save(bb, std::make_pair(from, to));
inflight_.back().request = comm_.isend(proc, tags::queue, bb.buffer);
}
}
// kick requests
while(nudge());
// check incoming queues
mpi::optional<mpi::status> ostatus = comm_.iprobe(mpi::any_source, tags::queue);
while(ostatus)
{
MemoryBuffer bb;
comm_.recv(ostatus->source(), tags::queue, bb.buffer);
std::pair<int,int> from_to;
diy::load_back(bb, from_to);
int from = from_to.first;
int to = from_to.second;
int size = bb.size();
int external = -1;
incoming_[to].queues[from] = MemoryBuffer();
if (block(lid(to)) != 0 || !queue_policy_->unload_incoming(*this, from, to, size))
{
incoming_[to].queues[from].swap(bb);
incoming_[to].queues[from].reset(); // buffer position = 0
} else if (queue_policy_->unload_incoming(*this, from, to, size))
{
//fprintf(stderr, "Directly unloading queue %d <- %d\n", to, from);
external = storage_->put(bb); // unload directly
}
incoming_[to].records[from] = QueueRecord(size, external);
++received_;
ostatus = comm_.iprobe(mpi::any_source, tags::queue);
}
}
void
diy::Master::
flush()
{
#ifdef DEBUG
time_type start = get_time();
unsigned wait = 1;
#endif
// make a list of outgoing queues to send (the ones in memory come first)
ToSendList to_send;
for (OutgoingQueuesMap::iterator it = outgoing_.begin(); it != outgoing_.end(); ++it)
{
OutgoingQueuesRecord& out = it->second;
if (out.external == -1)
to_send.push_front(it->first);
else
to_send.push_back(it->first);
}
//fprintf(stderr, "to_send.size(): %lu\n", to_send.size());
// XXX: we probably want a cleverer limit than block limit times average number of queues per block
// XXX: with queues we could easily maintain a specific space limit
int out_queues_limit;
if (limit_ == -1 || size() == 0)
out_queues_limit = to_send.size();
else
out_queues_limit = std::max((size_t) 1, to_send.size()/size()*limit_); // average number of queues per block * in-memory block limit
do
{
comm_exchange(to_send, out_queues_limit);
#ifdef DEBUG
time_type cur = get_time();
if (cur - start > wait*1000)
{
fprintf(stderr, "Waiting in flush [%d]: %lu - %d out of %d\n",
comm_.rank(), inflight_size_, received_, expected_);
wait *= 2;
}
#endif
} while (!inflight_.empty() || received_ < expected_ || !to_send.empty());
outgoing_.clear();
//fprintf(stderr, "Done in flush\n");
//show_incoming_records();
process_collectives();
comm_.barrier();
received_ = 0;
}
void
diy::Master::
process_collectives()
{
if (collectives_.empty())
return;
typedef CollectivesList::iterator CollectivesIterator;
std::vector<CollectivesIterator> iters;
std::vector<int> gids;
for (CollectivesMap::iterator cur = collectives_.begin(); cur != collectives_.end(); ++cur)
{
gids.push_back(cur->first);
iters.push_back(cur->second.begin());
}
while (iters[0] != collectives_.begin()->second.end())
{
iters[0]->init();
for (unsigned j = 1; j < iters.size(); ++j)
{
// NB: this assumes that the operations are commutative
iters[0]->update(*iters[j]);
}
iters[0]->global(comm_); // do the mpi collective
for (unsigned j = 1; j < iters.size(); ++j)
{
iters[j]->copy_from(*iters[0]);
++iters[j];
}
++iters[0];
}
}
bool
diy::Master::
nudge()
{
bool success = false;
for (InFlightList::iterator it = inflight_.begin(); it != inflight_.end(); ++it)
{
mpi::optional<mpi::status> ostatus = it->request.test();
if (ostatus)
{
success = true;
InFlightList::iterator rm = it;
--it;
inflight_.erase(rm); --inflight_size_;
}
}
return success;
}
void
diy::Master::
show_incoming_records() const
{
for (IncomingQueuesMap::const_iterator it = incoming_.begin(); it != incoming_.end(); ++it)
{
const IncomingQueuesRecords& in_qrs = it->second;
for (InQueueRecords::const_iterator cur = in_qrs.records.begin(); cur != in_qrs.records.end(); ++cur)
{
const QueueRecord& qr = cur->second;
fprintf(stderr, "%d <- %d: (size,external) = (%lu,%d)\n",
it->first, cur->first,
qr.size,
qr.external);
}
for (IncomingQueues::const_iterator cur = in_qrs.queues.begin(); cur != in_qrs.queues.end(); ++cur)
{
fprintf(stderr, "%d <- %d: queue.size() = %lu\n",
it->first, cur->first,
const_cast<IncomingQueuesRecords&>(in_qrs).queues[cur->first].size());
}
}
}
#endif
|