/usr/include/vtk-7.1/vtkdiy/decomposition.hpp is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 | #ifndef DIY_DECOMPOSITION_HPP
#define DIY_DECOMPOSITION_HPP
#include <vector>
#include <algorithm>
#include <iostream>
#include <cmath>
#include <sstream>
#include <stdexcept>
#include "link.hpp"
#include "assigner.hpp"
#include "master.hpp"
namespace diy
{
namespace detail
{
template<class Bounds_>
struct BoundsHelper;
template<>
struct BoundsHelper<DiscreteBounds>
{
static int from(int i, int n, int min, int max, bool) { return min + (max - min + 1)/n * i; }
static int to(int i, int n, int min, int max, bool shared_face)
{
if (i == n - 1)
return max;
else
return from(i+1, n, min, max, shared_face) - (shared_face ? 0 : 1);
}
static int lower(int x, int n, int min, int max, bool shared)
{
int width = (max - min + 1)/n;
int res = (x - min)/width;
if (res >= n) res = n - 1;
if (shared && x == from(res, n, min, max, shared))
--res;
return res;
}
static int upper(int x, int n, int min, int max, bool shared)
{
int width = (max - min + 1)/n;
int res = (x - min)/width + 1;
if (shared && x == from(res, n, min, max, shared))
++res;
return res;
}
};
template<>
struct BoundsHelper<ContinuousBounds>
{
static float from(int i, int n, float min, float max, bool) { return min + (max - min)/n * i; }
static float to(int i, int n, float min, float max, bool) { return min + (max - min)/n * (i+1); }
static int lower(float x, int n, float min, float max, bool) { float width = (max - min)/n; float res = std::floor((x - min)/width); if (min + res*width == x) return (res - 1); else return res; }
static int upper(float x, int n, float min, float max, bool) { float width = (max - min)/n; float res = std::ceil ((x - min)/width); if (min + res*width == x) return (res + 1); else return res; }
};
}
//! \ingroup Decomposition
//! Decomposes a regular (discrete or continuous) domain into even blocks;
//! creates Links with Bounds along the way.
template<class Bounds_>
struct RegularDecomposer
{
typedef Bounds_ Bounds;
typedef typename BoundsValue<Bounds>::type Coordinate;
typedef typename RegularLinkSelector<Bounds>::type Link;
typedef std::vector<bool> BoolVector;
typedef std::vector<Coordinate> CoordinateVector;
typedef std::vector<int> DivisionsVector;
/// @param dim: dimensionality of the decomposition
/// @param domain: bounds of global domain
/// @param nblocks: total number of global blocks
/// @param share_face: indicates dimensions on which to share block faces
/// @param wrap: indicates dimensions on which to wrap the boundary
/// @param ghosts: indicates how many ghosts to use in each dimension
/// @param divisions: indicates how many cuts to make along each dimension
/// (0 means "no constraint," i.e., leave it up to the algorithm)
RegularDecomposer(int dim_,
const Bounds& domain_,
int nblocks_,
BoolVector share_face_ = BoolVector(),
BoolVector wrap_ = BoolVector(),
CoordinateVector ghosts_ = CoordinateVector(),
DivisionsVector divisions_ = DivisionsVector()):
dim(dim_), domain(domain_), nblocks(nblocks_),
share_face(share_face_),
wrap(wrap_), ghosts(ghosts_), divisions(divisions_)
{
if ((int) share_face.size() < dim) share_face.resize(dim);
if ((int) wrap.size() < dim) wrap.resize(dim);
if ((int) ghosts.size() < dim) ghosts.resize(dim);
if ((int) divisions.size() < dim) divisions.resize(dim);
fill_divisions(divisions);
}
// Calls create(int gid, const Bounds& bounds, const Link& link)
template<class Creator>
void decompose(int rank, const Assigner& assigner, const Creator& create);
template<class Updater>
void decompose(int rank, const Assigner& assigner, Master& master, const Updater& update);
void decompose(int rank, const Assigner& assigner, Master& master);
// find lowest gid that owns a particular point
template<class Point>
int lowest_gid(const Point& p) const;
void gid_to_coords(int gid, DivisionsVector& coords) const { gid_to_coords(gid, coords, divisions); }
int coords_to_gid(const DivisionsVector& coords) const { return coords_to_gid(coords, divisions); }
void fill_divisions(std::vector<int>& divisions) const;
void fill_bounds(Bounds& bounds, const DivisionsVector& coords, bool add_ghosts = false) const;
void fill_bounds(Bounds& bounds, int gid, bool add_ghosts = false) const;
static bool all(const std::vector<int>& v, int x);
static void gid_to_coords(int gid, DivisionsVector& coords, const DivisionsVector& divisions);
static int coords_to_gid(const DivisionsVector& coords, const DivisionsVector& divisions);
static void factor(std::vector<unsigned>& factors, int n);
// Point to GIDs functions
template<class Point>
void point_to_gids(std::vector<int>& gids, const Point& p) const;
//! returns gid of a block that contains the point; ignores ghosts
template<class Point>
int point_to_gid(const Point& p) const;
template<class Point>
int num_gids(const Point& p) const;
template<class Point>
void top_bottom(int& top, int& bottom, const Point& p, int axis) const;
int dim;
Bounds domain;
int nblocks;
BoolVector share_face;
BoolVector wrap;
CoordinateVector ghosts;
DivisionsVector divisions;
};
/**
* \ingroup Decomposition
* \brief Decomposes the domain into a prescribed pattern of blocks.
*
* @param dim dimension of the domain
* @param rank local rank
* @param assigner decides how processors are assigned to blocks (maps a gid to a rank)
* also communicates the total number of blocks
* @param create the callback functor
* @param wrap indicates dimensions on which to wrap the boundary
* @param ghosts indicates how many ghosts to use in each dimension
* @param divs indicates how many cuts to make along each dimension
* (0 means "no constraint," i.e., leave it up to the algorithm)
*
* `create(...)` is called with each block assigned to the local domain. See [decomposition example](#decomposition-example).
*/
template<class Bounds, class Creator>
void decompose(int dim,
int rank,
const Bounds& domain,
const Assigner& assigner,
const Creator& create,
typename RegularDecomposer<Bounds>::BoolVector share_face = typename RegularDecomposer<Bounds>::BoolVector(),
typename RegularDecomposer<Bounds>::BoolVector wrap = typename RegularDecomposer<Bounds>::BoolVector(),
typename RegularDecomposer<Bounds>::CoordinateVector ghosts = typename RegularDecomposer<Bounds>::CoordinateVector(),
typename RegularDecomposer<Bounds>::DivisionsVector divs = typename RegularDecomposer<Bounds>::DivisionsVector())
{
RegularDecomposer<Bounds>(dim, domain, assigner.nblocks(), share_face, wrap, ghosts, divs).decompose(rank, assigner, create);
}
namespace detail
{
template<class Bounds>
struct AddBlock
{
typedef typename RegularDecomposer<Bounds>::Link Link;
AddBlock(diy::Master* master):
master_(master) {}
void operator()(int gid, const Bounds& core, const Bounds& bounds, const Bounds& domain, const Link& link) const
{
void* b = master_->create();
Link* l = new Link(link);
master_->add(gid, b, l);
}
diy::Master* master_;
};
template<class Bounds, class Update>
struct Updater
{
typedef typename RegularDecomposer<Bounds>::Link Link;
Updater(diy::Master* master, const Update& update):
master_(master), update_(update) {}
void operator()(int gid, const Bounds& core, const Bounds& bounds, const Bounds& domain, const Link& link) const
{
int lid = master_->lid(gid);
Link* l = new Link(link);
master_->replace_link(lid, l);
update_(gid, lid, core, bounds, domain, *l);
}
diy::Master* master_;
const Update& update_;
};
}
/**
* \ingroup Decomposition
* \brief Decomposes the domain into a prescribed pattern of blocks.
*
* @param dim dimension of the domain
* @param rank local rank
* @param assigner decides how processors are assigned to blocks (maps a gid to a rank)
* also communicates the total number of blocks
* @param master gets the blocks once this function returns
* @param wrap indicates dimensions on which to wrap the boundary
* @param ghosts indicates how many ghosts to use in each dimension
* @param divs indicates how many cuts to make along each dimension
* (0 means "no constraint," i.e., leave it up to the algorithm)
*
* `master` must have been supplied a create function in order for this function to work.
*/
template<class Bounds>
void decompose(int dim,
int rank,
const Bounds& domain,
const Assigner& assigner,
Master& master,
typename RegularDecomposer<Bounds>::BoolVector share_face = typename RegularDecomposer<Bounds>::BoolVector(),
typename RegularDecomposer<Bounds>::BoolVector wrap = typename RegularDecomposer<Bounds>::BoolVector(),
typename RegularDecomposer<Bounds>::CoordinateVector ghosts = typename RegularDecomposer<Bounds>::CoordinateVector(),
typename RegularDecomposer<Bounds>::DivisionsVector divs = typename RegularDecomposer<Bounds>::DivisionsVector())
{
RegularDecomposer<Bounds>(dim, domain, assigner.nblocks(), share_face, wrap, ghosts, divs).decompose(rank, assigner, master);
}
/**
* \ingroup Decomposition
* \brief A "null" decompositon that simply creates the blocks and adds them to the master
*
* @param rank local rank
* @param assigner decides how processors are assigned to blocks (maps a gid to a rank)
* also communicates the total number of blocks
* @param master gets the blocks once this function returns
*/
inline
void decompose(int rank,
const Assigner& assigner,
Master& master)
{
std::vector<int> local_gids;
assigner.local_gids(rank, local_gids);
for (size_t i = 0; i < local_gids.size(); ++i)
master.add(local_gids[i], master.create(), new diy::Link);
}
/**
* \ingroup Decomposition
* \brief Add a decomposition (modify links) of an existing set of blocks that were
* added to the master previously
*
* @param rank local rank
* @param assigner decides how processors are assigned to blocks (maps a gid to a rank)
* also communicates the total number of blocks
*/
template<class Bounds, class Update>
void decompose(int dim,
int rank,
const Bounds& domain,
const Assigner& assigner,
Master& master,
const Update& update,
typename RegularDecomposer<Bounds>::BoolVector share_face =
typename RegularDecomposer<Bounds>::BoolVector(),
typename RegularDecomposer<Bounds>::BoolVector wrap =
typename RegularDecomposer<Bounds>::BoolVector(),
typename RegularDecomposer<Bounds>::CoordinateVector ghosts =
typename RegularDecomposer<Bounds>::CoordinateVector(),
typename RegularDecomposer<Bounds>::DivisionsVector divs =
typename RegularDecomposer<Bounds>::DivisionsVector())
{
RegularDecomposer<Bounds>(dim, domain, assigner.nblocks(), share_face, wrap, ghosts, divs).
decompose(rank, assigner, master, update);
}
//! Decomposition example: \example decomposition/test-decomposition.cpp
//! Direct master insertion example: \example decomposition/test-direct-master.cpp
}
// decomposes domain and adds blocks to the master
template<class Bounds>
void
diy::RegularDecomposer<Bounds>::
decompose(int rank, const Assigner& assigner, Master& master)
{
decompose(rank, assigner, detail::AddBlock<Bounds>(&master));
}
template<class Bounds>
template<class Creator>
void
diy::RegularDecomposer<Bounds>::
decompose(int rank, const Assigner& assigner, const Creator& create)
{
std::vector<int> gids;
assigner.local_gids(rank, gids);
for (int i = 0; i < (int)gids.size(); ++i)
{
int gid = gids[i];
DivisionsVector coords;
gid_to_coords(gid, coords);
Bounds core, bounds;
fill_bounds(core, coords);
fill_bounds(bounds, coords, true);
// Fill link with all the neighbors
Link link(dim, core, bounds);
std::vector<int> offsets(dim, -1);
offsets[0] = -2;
while (!all(offsets, 1))
{
// next offset
int i;
for (i = 0; i < dim; ++i)
if (offsets[i] == 1)
offsets[i] = -1;
else
break;
++offsets[i];
if (all(offsets, 0)) continue; // skip ourselves
DivisionsVector nhbr_coords(dim);
Direction dir, wrap_dir;
bool inbounds = true;
for (int i = 0; i < dim; ++i)
{
nhbr_coords[i] = coords[i] + offsets[i];
// wrap
if (nhbr_coords[i] < 0)
{
if (wrap[i])
{
nhbr_coords[i] = divisions[i] - 1;
wrap_dir[i] = -1;
}
else
inbounds = false;
}
if (nhbr_coords[i] >= divisions[i])
{
if (wrap[i])
{
nhbr_coords[i] = 0;
wrap_dir[i] = 1;
}
else
inbounds = false;
}
// NB: this needs to match the addressing scheme in dir_t (in constants.h)
if (offsets[i] == -1 || offsets[i] == 1)
dir[i] = offsets[i];
}
if (!inbounds) continue;
int nhbr_gid = coords_to_gid(nhbr_coords);
BlockID bid; bid.gid = nhbr_gid; bid.proc = assigner.rank(nhbr_gid);
link.add_neighbor(bid);
Bounds nhbr_bounds;
fill_bounds(nhbr_bounds, nhbr_coords);
link.add_bounds(nhbr_bounds);
link.add_direction(dir);
link.add_wrap(wrap_dir);
}
create(gid, core, bounds, domain, link);
}
}
// decomposes domain but does not add blocks to master, assumes they were added already
template<class Bounds>
template<class Update>
void
diy::RegularDecomposer<Bounds>::
decompose(int rank, const Assigner& assigner, Master& master, const Update& update)
{
decompose(rank, assigner, detail::Updater<Bounds,Update>(&master, update));
}
template<class Bounds>
bool
diy::RegularDecomposer<Bounds>::
all(const std::vector<int>& v, int x)
{
for (unsigned i = 0; i < v.size(); ++i)
if (v[i] != x)
return false;
return true;
}
template<class Bounds>
void
diy::RegularDecomposer<Bounds>::
gid_to_coords(int gid, DivisionsVector& coords, const DivisionsVector& divisions)
{
int dim = divisions.size();
for (int i = 0; i < dim; ++i)
{
coords.push_back(gid % divisions[i]);
gid /= divisions[i];
}
}
template<class Bounds>
int
diy::RegularDecomposer<Bounds>::
coords_to_gid(const DivisionsVector& coords, const DivisionsVector& divisions)
{
int gid = 0;
for (int i = coords.size() - 1; i >= 0; --i)
{
gid *= divisions[i];
gid += coords[i];
}
return gid;
}
//! \ingroup Decomposition
//! Gets the bounds, with or without ghosts, for a block specified by its block coordinates
template<class Bounds>
void
diy::RegularDecomposer<Bounds>::
fill_bounds(Bounds& bounds, //!< (output) bounds
const DivisionsVector& coords, //!< coordinates of the block in the decomposition
bool add_ghosts) //!< whether to include ghosts in the output bounds
const
{
for (int i = 0; i < dim; ++i)
{
bounds.min[i] = detail::BoundsHelper<Bounds>::from(coords[i], divisions[i], domain.min[i], domain.max[i], share_face[i]);
bounds.max[i] = detail::BoundsHelper<Bounds>::to (coords[i], divisions[i], domain.min[i], domain.max[i], share_face[i]);
}
for (int i = dim; i < DIY_MAX_DIM; ++i) // set the unused dimension to 0
{
bounds.min[i] = 0;
bounds.max[i] = 0;
}
if (!add_ghosts)
return;
for (int i = 0; i < dim; ++i)
{
if (wrap[i])
{
bounds.min[i] -= ghosts[i];
bounds.max[i] += ghosts[i];
} else
{
bounds.min[i] = std::max(domain.min[i], bounds.min[i] - ghosts[i]);
bounds.max[i] = std::min(domain.max[i], bounds.max[i] + ghosts[i]);
}
}
}
//! \ingroup Decomposition
//! Gets the bounds, with or without ghosts, for a block specified by its gid
template<class Bounds>
void
diy::RegularDecomposer<Bounds>::
fill_bounds(Bounds& bounds, //!< (output) bounds
int gid, //!< global id of the block
bool add_ghosts) //!< whether to include ghosts in the output bounds
const
{
DivisionsVector coords;
gid_to_coords(gid, coords);
if (add_ghosts)
fill_bounds(bounds, coords, true);
else
fill_bounds(bounds, coords);
}
namespace diy { namespace detail {
// current state of division in one dimension used in fill_divisions below
template<class Coordinate>
struct Div
{
int dim; // 0, 1, 2, etc. e.g. for x, y, z etc.
int nb; // number of blocks so far in this dimension
Coordinate b_size; // block size so far in this dimension
// sort on descending block size unless tied, in which case
// sort on ascending num blocks in current dim unless tied, in which case
// sort on ascending dimension
bool operator<(Div rhs) const
{
// sort on second value of the pair unless tied, in which case sort on first
if (b_size == rhs.b_size)
{
if (nb == rhs.nb)
return(dim < rhs.dim);
return(nb < rhs.nb);
}
return(b_size > rhs.b_size);
}
};
} }
template<class Bounds>
void
diy::RegularDecomposer<Bounds>::
fill_divisions(std::vector<int>& divisions) const
{
// prod = number of blocks unconstrained by user; c = number of unconstrained dimensions
int prod = 1; int c = 0;
for (int i = 0; i < dim; ++i)
if (divisions[i] != 0)
{
prod *= divisions[i];
++c;
}
if (nblocks % prod != 0)
{
fprintf(stderr, "Total number of blocks cannot be factored into provided divs\n");
return;
}
if (c == (int) divisions.size()) // nothing to do; user provided all divs
return;
// factor number of blocks left in unconstrained dimensions
// factorization is sorted from smallest to largest factors
std::vector<unsigned> factors;
factor(factors, nblocks/prod);
using detail::Div;
std::vector< Div<Coordinate> > missing_divs; // pairs consisting of (dim, #divs)
// init missing_divs
for (int i = 0; i < dim; i++)
{
if (divisions[i] == 0)
{
Div<Coordinate> div;
div.dim = i;
div.nb = 1;
div.b_size = domain.max[i] - domain.min[i];
missing_divs.push_back(div);
}
}
// iterate over factorization of number of blocks (factors are sorted smallest to largest)
// NB: using int instead of size_t because must be negative in order to break out of loop
for (int i = factors.size() - 1; i >= 0; --i)
{
// fill in missing divs by dividing dimension w/ largest block size
// except when this would be illegal (resulting in bounds.max < bounds.min;
// only a problem for discrete bounds
// sort on decreasing block size
std::sort(missing_divs.begin(), missing_divs.end());
// split the dimension with the largest block size (first element in vector)
Coordinate min =
detail::BoundsHelper<Bounds>::from(0,
missing_divs[0].nb * factors[i],
domain.min[missing_divs[0].dim],
domain.max[missing_divs[0].dim],
share_face[missing_divs[0].dim]);
Coordinate max =
detail::BoundsHelper<Bounds>::to(0,
missing_divs[0].nb * factors[i],
domain.min[missing_divs[0].dim],
domain.max[missing_divs[0].dim],
share_face[missing_divs[0].dim]);
if (max >= min)
{
missing_divs[0].nb *= factors[i];
missing_divs[0].b_size = max - min;
}
else
{
std::ostringstream oss;
oss << "Unable to decompose domain into " << nblocks << " blocks: " << min << " " << max;
throw std::runtime_error(oss.str());
}
}
// assign the divisions
for (size_t i = 0; i < missing_divs.size(); i++)
divisions[missing_divs[i].dim] = missing_divs[i].nb;
}
template<class Bounds>
void
diy::RegularDecomposer<Bounds>::
factor(std::vector<unsigned>& factors, int n)
{
while (n != 1)
for (int i = 2; i <= n; ++i)
{
if (n % i == 0)
{
factors.push_back(i);
n /= i;
break;
}
}
}
// Point to GIDs
// TODO: deal with wrap correctly
// TODO: add an optional ghosts argument to ignore ghosts (if we want to find the true owners, or something like that)
template<class Bounds>
template<class Point>
void
diy::RegularDecomposer<Bounds>::
point_to_gids(std::vector<int>& gids, const Point& p) const
{
std::vector< std::pair<int, int> > ranges(dim);
for (int i = 0; i < dim; ++i)
top_bottom(ranges[i].second, ranges[i].first, p, i);
// look up gids for all combinations
DivisionsVector coords(dim), location(dim);
while(location.back() < ranges.back().second - ranges.back().first)
{
for (int i = 0; i < dim; ++i)
coords[i] = ranges[i].first + location[i];
gids.push_back(coords_to_gid(coords, divisions));
location[0]++;
unsigned i = 0;
while (i < dim-1 && location[i] == ranges[i].second - ranges[i].first)
{
location[i] = 0;
++i;
location[i]++;
}
}
}
template<class Bounds>
template<class Point>
int
diy::RegularDecomposer<Bounds>::
point_to_gid(const Point& p) const
{
int gid = 0;
for (int axis = dim - 1; axis >= 0; --axis)
{
int bottom = detail::BoundsHelper<Bounds>::lower(p[axis], divisions[axis], domain.min[axis], domain.max[axis], share_face[axis]);
bottom = std::max(0, bottom);
// coupled with coords_to_gid
gid *= divisions[axis];
gid += bottom;
}
return gid;
}
template<class Bounds>
template<class Point>
int
diy::RegularDecomposer<Bounds>::
num_gids(const Point& p) const
{
int res = 1;
for (int i = 0; i < dim; ++i)
{
int top, bottom;
top_bottom(top, bottom, p, i);
res *= top - bottom;
}
return res;
}
template<class Bounds>
template<class Point>
void
diy::RegularDecomposer<Bounds>::
top_bottom(int& top, int& bottom, const Point& p, int axis) const
{
Coordinate l = p[axis] - ghosts[axis];
Coordinate r = p[axis] + ghosts[axis];
top = detail::BoundsHelper<Bounds>::upper(r, divisions[axis], domain.min[axis], domain.max[axis], share_face[axis]);
bottom = detail::BoundsHelper<Bounds>::lower(l, divisions[axis], domain.min[axis], domain.max[axis], share_face[axis]);
if (!wrap[axis])
{
bottom = std::max(0, bottom);
top = std::min(divisions[axis], top);
}
}
// find lowest gid that owns a particular point
template<class Bounds>
template<class Point>
int
diy::RegularDecomposer<Bounds>::
lowest_gid(const Point& p) const
{
// TODO: optimize - no need to compute all gids
std::vector<int> gids;
point_to_gids(gids, p);
std::sort(gids.begin(), gids.end());
return gids[0];
}
#endif
|