This file is indexed.

/usr/include/vtk-7.1/vtkVolumeMapper.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkVolumeMapper.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkVolumeMapper
 * @brief   Abstract class for a volume mapper
 *
 *
 * vtkVolumeMapper is the abstract definition of a volume mapper for regular
 * rectilinear data (vtkImageData).  Several  basic types of volume mappers
 * are supported.
 *
 * @sa
 * vtkVolumeRayCastMapper vtkVolumeTextureMapper2D
*/

#ifndef vtkVolumeMapper_h
#define vtkVolumeMapper_h

#include "vtkRenderingVolumeModule.h" // For export macro
#include "vtkAbstractVolumeMapper.h"

class vtkRenderer;
class vtkVolume;
class vtkImageData;

#define VTK_CROP_SUBVOLUME              0x0002000
#define VTK_CROP_FENCE                  0x2ebfeba
#define VTK_CROP_INVERTED_FENCE         0x5140145
#define VTK_CROP_CROSS                  0x0417410
#define VTK_CROP_INVERTED_CROSS         0x7be8bef

class vtkWindow;

class VTKRENDERINGVOLUME_EXPORT vtkVolumeMapper : public vtkAbstractVolumeMapper
{
public:
  vtkTypeMacro(vtkVolumeMapper,vtkAbstractVolumeMapper);
  void PrintSelf( ostream& os, vtkIndent indent );

  //@{
  /**
   * Set/Get the input data
   */
  virtual void SetInputData( vtkImageData * );
  virtual void SetInputData( vtkDataSet * );
  vtkImageData *GetInput();
  //@}

  //@{
  /**
   * Set/Get the blend mode.
   * The default mode is Composite where the scalar values are sampled through
   * the volume and composited in a front-to-back scheme through alpha blending.
   * The final color and opacity is determined using the color and opacity
   * transfer functions.
   *
   * Maximum and minimum intensity blend modes use the maximum and minimum
   * scalar values, respectively,  along the sampling ray. The final color and
   * opacity is determined by passing the resultant value through the color and
   * opacity transfer functions.
   *
   * Additive blend mode accumulates scalar values by passing each value through
   * the opacity transfer function and then adding up the product of the value
   * and its opacity. In other words, the scalar values are scaled using the
   * opacity transfer function and summed to derive the final color. Note that
   * the resulting image is always grayscale i.e. aggregated values are not
   * passed through the color transfer function. This is because the final
   * value is a derived value and not a real data value along the sampling ray.
   *
   * Average intensity blend mode works similar to the additive blend mode where
   * the scalar values are multiplied by opacity calculated from the opacity
   * transfer function and then added. The additional step here is to
   * divide the sum by the number of samples taken through the volume.
   * One can control the scalar range by setting the AverageIPScalarRange ivar
   * to disregard scalar values, not in the range of interest, from the average
   * computation.
   * As is the case with the additive intensity projection, the final
   * image will always be grayscale i.e. the aggregated values are not
   * passed through the color transfer function. This is because the
   * resultant value is a derived value and not a real data value along
   * the sampling ray.
   *
   * \note vtkVolumeMapper::AVERAGE_INTENSITY_BLEND is only supported by the
   * vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
   * \sa SetAverageIPScalarRange()
   */
  vtkSetMacro( BlendMode, int );
  void SetBlendModeToComposite()
    { this->SetBlendMode( vtkVolumeMapper::COMPOSITE_BLEND ); }
  void SetBlendModeToMaximumIntensity()
    { this->SetBlendMode( vtkVolumeMapper::MAXIMUM_INTENSITY_BLEND ); }
  void SetBlendModeToMinimumIntensity()
    { this->SetBlendMode( vtkVolumeMapper::MINIMUM_INTENSITY_BLEND ); }
  void SetBlendModeToAverageIntensity()
    { this->SetBlendMode( vtkVolumeMapper::AVERAGE_INTENSITY_BLEND ); }
  void SetBlendModeToAdditive()
    { this->SetBlendMode( vtkVolumeMapper::ADDITIVE_BLEND ); }
  vtkGetMacro( BlendMode, int );
  //@}

  //@{
  /**
   * Set/Get the scalar range to be considered for average intensity projection
   * blend mode. Only scalar values between this range will be averaged during
   * ray casting. This can be useful when volume rendering CT datasets where the
   * areas occupied by air would deviate the final rendering. By default, the
   * range is set to (VTK_DOUBLE_MIN, VTK_DOUBLE_MAX).
   * \sa SetBlendModeToAverageIntensity()
   */
  vtkSetVector2Macro(AverageIPScalarRange, double);
  vtkGetVectorMacro(AverageIPScalarRange, double, 2);
  //@}

  //@{
  /**
   * Turn On/Off orthogonal cropping. (Clipping planes are
   * perpendicular to the coordinate axes.)
   */
  vtkSetClampMacro(Cropping,int,0,1);
  vtkGetMacro(Cropping,int);
  vtkBooleanMacro(Cropping,int);
  //@}

  //@{
  /**
   * Set/Get the Cropping Region Planes ( xmin, xmax, ymin, ymax, zmin, zmax )
   * These planes are defined in volume coordinates - spacing and origin are
   * considered.
   */
  vtkSetVector6Macro( CroppingRegionPlanes, double );
  vtkGetVectorMacro(  CroppingRegionPlanes, double, 6 );
  //@}

  //@{
  /**
   * Get the cropping region planes in voxels. Only valid during the
   * rendering process
   */
  vtkGetVectorMacro( VoxelCroppingRegionPlanes, double, 6 );
  //@}

  //@{
  /**
   * Set the flags for the cropping regions. The clipping planes divide the
   * volume into 27 regions - there is one bit for each region. The regions
   * start from the one containing voxel (0,0,0), moving along the x axis
   * fastest, the y axis next, and the z axis slowest. These are represented
   * from the lowest bit to bit number 27 in the integer containing the
   * flags. There are several convenience functions to set some common
   * configurations - subvolume (the default), fence (between any of the
   * clip plane pairs), inverted fence, cross (between any two of the
   * clip plane pairs) and inverted cross.
   */
  vtkSetClampMacro( CroppingRegionFlags, int, 0x0, 0x7ffffff );
  vtkGetMacro( CroppingRegionFlags, int );
  void SetCroppingRegionFlagsToSubVolume()
    {this->SetCroppingRegionFlags( VTK_CROP_SUBVOLUME );};
  void SetCroppingRegionFlagsToFence()
    {this->SetCroppingRegionFlags( VTK_CROP_FENCE );};
  void SetCroppingRegionFlagsToInvertedFence()
    {this->SetCroppingRegionFlags( VTK_CROP_INVERTED_FENCE );};
  void SetCroppingRegionFlagsToCross()
    {this->SetCroppingRegionFlags( VTK_CROP_CROSS );};
  void SetCroppingRegionFlagsToInvertedCross()
    {this->SetCroppingRegionFlags( VTK_CROP_INVERTED_CROSS );};
  //@}

  /**
   * WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE
   * DO NOT USE THIS METHOD OUTSIDE OF THE RENDERING PROCESS
   * Render the volume
   */
  virtual void Render(vtkRenderer *ren, vtkVolume *vol)=0;

  /**
   * WARNING: INTERNAL METHOD - NOT INTENDED FOR GENERAL USE
   * Release any graphics resources that are being consumed by this mapper.
   * The parameter window could be used to determine which graphic
   * resources to release.
   */
  virtual void ReleaseGraphicsResources(vtkWindow *) {}

  /**
   * Blend modes.
   * The default mode is Composite where the scalar values are sampled through
   * the volume and composited in a front-to-back scheme through alpha blending.
   * The final color and opacity is determined using the color and opacity
   * transfer functions.
   *
   * Maximum and minimum intensity blend modes use the maximum and minimum
   * scalar values, respectively,  along the sampling ray. The final color and
   * opacity is determined by passing the resultant value through the color and
   * opacity transfer functions.
   *
   * Additive blend mode accumulates scalar values by passing each value through
   * the opacity transfer function and then adding up the product of the value
   * and its opacity. In other words, the scalar values are scaled using the
   * opacity transfer function and summed to derive the final color. Note that
   * the resulting image is always grayscale i.e. aggregated values are not
   * passed through the color transfer function. This is because the final
   * value is a derived value and not a real data value along the sampling ray.
   *
   * Average intensity blend mode works similar to the additive blend mode where
   * the scalar values are multiplied by opacity calculated from the opacity
   * transfer function and then added. The additional step here is to
   * divide the sum by the number of samples taken through the volume.
   * As is the case with the additive intensity projection, the final
   * image will always be grayscale i.e. the aggregated values are not
   * passed through the color transfer function. This is because the
   * resultant value is a derived value and not a real data value along
   * the sampling ray.
   *
   * \note vtkVolumeMapper::AVERAGE_INTENSITY_BLEND is only supported by the
   * vtkGPUVolumeRayCastMapper with the OpenGL2 backend.
   */
  enum BlendModes
  {
    COMPOSITE_BLEND,
    MAXIMUM_INTENSITY_BLEND,
    MINIMUM_INTENSITY_BLEND,
    AVERAGE_INTENSITY_BLEND,
    ADDITIVE_BLEND
  };

protected:
  vtkVolumeMapper();
  ~vtkVolumeMapper();

  /**
   * Compute a sample distance from the data spacing. When the number of
   * voxels is 8, the sample distance will be roughly 1/200 the average voxel
   * size. The distance will grow proportionally to numVoxels^(1/3).
   */
  double SpacingAdjustedSampleDistance(double inputSpacing[3],
                                       int inputExtent[6]);

  int   BlendMode;

  /**
   * Threshold range for average intensity projection
   */
  double AverageIPScalarRange[2];

  //@{
  /**
   * Cropping variables, and a method for converting the world
   * coordinate cropping region planes to voxel coordinates
   */
  int                  Cropping;
  double               CroppingRegionPlanes[6];
  double               VoxelCroppingRegionPlanes[6];
  int                  CroppingRegionFlags;
  void ConvertCroppingRegionPlanesToVoxels();
  //@}

  virtual int FillInputPortInformation(int, vtkInformation*);

private:
  vtkVolumeMapper(const vtkVolumeMapper&) VTK_DELETE_FUNCTION;
  void operator=(const vtkVolumeMapper&) VTK_DELETE_FUNCTION;
};


#endif