This file is indexed.

/usr/include/vtk-7.1/vtkViewDependentErrorMetric.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkViewDependentErrorMetric.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkViewDependentErrorMetric
 * @brief   Objects that compute a
 * screen-based error during cell tessellation.
 *
 *
 * It is a concrete error metric, based on a geometric criterium in
 * the screen space: the variation of the projected edge from a projected
 * straight line
 *
 * @sa
 * vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric
*/

#ifndef vtkViewDependentErrorMetric_h
#define vtkViewDependentErrorMetric_h

#include "vtkRenderingCoreModule.h" // For export macro
#include "vtkGenericSubdivisionErrorMetric.h"

class vtkViewport;
class vtkCoordinate;

class VTKRENDERINGCORE_EXPORT vtkViewDependentErrorMetric : public vtkGenericSubdivisionErrorMetric
{
public:
  /**
   * Construct the error metric with a default squared screen-based geometric
   * accuracy measured in pixels equal to 0.25 (0.5^2).
   */
  static vtkViewDependentErrorMetric *New();

  //@{
  /**
   * Standard VTK type and error macros.
   */
  vtkTypeMacro(vtkViewDependentErrorMetric,vtkGenericSubdivisionErrorMetric);
  void PrintSelf(ostream& os, vtkIndent indent);
  //@}

  //@{
  /**
   * Return the squared screen-based geometric accurary measured in pixels.
   * An accuracy less or equal to 0.25 (0.5^2) ensures that the screen-space
   * interpolation of a mid-point matchs exactly with the projection of the
   * mid-point (a value less than 1 but greater than 0.25 is not enough,
   * because of 8-neighbors). Maybe it is useful for lower accuracy in case of
   * anti-aliasing?
   * \post positive_result: result>0
   */
  vtkGetMacro(PixelTolerance, double);
  //@}

  /**
   * Set the squared screen-based geometric accuracy measured in pixels.
   * Subdivision will be required if the square distance between the projection
   * of the real point and the straight line passing through the projection
   * of the vertices of the edge is greater than `value'.
   * For instance, 0.25 will give better result than 1.
   * \pre positive_value: value>0
   */
  void SetPixelTolerance(double value);

  //@{
  /**
   * Set/Get the renderer with `renderer' on which the error metric
   * is based. The error metric use the active camera of the renderer.
   */
  vtkGetObjectMacro(Viewport,vtkViewport);
  void SetViewport(vtkViewport *viewport);
  //@}

  /**
   * Does the edge need to be subdivided according to the distance between
   * the line passing through its endpoints in screen space and the projection
   * of its mid point?
   * The edge is defined by its `leftPoint' and its `rightPoint'.
   * `leftPoint', `midPoint' and `rightPoint' have to be initialized before
   * calling RequiresEdgeSubdivision().
   * Their format is global coordinates, parametric coordinates and
   * point centered attributes: xyx rst abc de...
   * `alpha' is the normalized abscissa of the midpoint along the edge.
   * (close to 0 means close to the left point, close to 1 means close to the
   * right point)
   * \pre leftPoint_exists: leftPoint!=0
   * \pre midPoint_exists: midPoint!=0
   * \pre rightPoint_exists: rightPoint!=0
   * \pre clamped_alpha: alpha>0 && alpha<1
   * \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
   * =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
   */
  int RequiresEdgeSubdivision(double *leftPoint, double *midPoint, double *rightPoint,
                              double alpha);

  /**
   * Return the error at the mid-point. The type of error depends on the state
   * of the concrete error metric. For instance, it can return an absolute
   * or relative error metric.
   * See RequiresEdgeSubdivision() for a description of the arguments.
   * \pre leftPoint_exists: leftPoint!=0
   * \pre midPoint_exists: midPoint!=0
   * \pre rightPoint_exists: rightPoint!=0
   * \pre clamped_alpha: alpha>0 && alpha<1
   * \pre valid_size: sizeof(leftPoint)=sizeof(midPoint)=sizeof(rightPoint)
   * =GetAttributeCollection()->GetNumberOfPointCenteredComponents()+6
   * \post positive_result: result>=0
   */
  double GetError(double *leftPoint, double *midPoint,
                  double *rightPoint, double alpha);

protected:
  vtkViewDependentErrorMetric();
  ~vtkViewDependentErrorMetric();

  /**
   * Square distance between a straight line (defined by points x and y)
   * and a point z. Property: if x and y are equal, the line is a point and
   * the result is the square distance between points x and z.
   */
  double Distance2LinePoint(double x[2],
                            double y[2],
                            double z[2]);

  double PixelTolerance;
  vtkViewport *Viewport;
  // used to get display coordinates from world coordinates
  vtkCoordinate *Coordinate;

private:
  vtkViewDependentErrorMetric(const vtkViewDependentErrorMetric&) VTK_DELETE_FUNCTION;
  void operator=(const vtkViewDependentErrorMetric&) VTK_DELETE_FUNCTION;
};

#endif