This file is indexed.

/usr/include/vtk-7.1/vtkSimpleCellTessellator.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkSimpleCellTessellator.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkSimpleCellTessellator
 * @brief   helper class to perform cell tessellation
 *
 * vtkSimpleCellTessellator is a helper class to perform adaptive tessellation
 * of particular cell topologies. The major purpose for this class is to
 * transform higher-order cell types (e.g., higher-order finite elements)
 * into linear cells that can then be easily visualized by VTK. This class
 * works in conjunction with the vtkGenericDataSet and vtkGenericAdaptorCell
 * classes.
 *
 * This algorithm is based on edge subdivision. An error metric along each
 * edge is evaluated, and if the error is greater than some tolerance, the
 * edge is subdivided (as well as all connected 2D and 3D cells). The process
 * repeats until the error metric is satisfied. Since the algorithm is based
 * on edge subdivision it inherently avoid T-junctions.
 *
 * A significant issue addressed by this algorithm is to insure face
 * compatibility across neigboring cells. That is, diagonals due to face
 * triangulation must match to insure that the mesh is compatible. The
 * algorithm employs a precomputed table to accelerate the tessellation
 * process. The table was generated with the help of vtkOrderedTriangulator
 * the basic idea is that the choice of diagonal is made only by considering the
 * relative value of the point ids.
 *
 * @sa
 * vtkGenericCellTessellator vtkGenericSubdivisionErrorMetric vtkAttributesErrorMetric
 * vtkGeometricErrorMetric vtkViewDependentErrorMetric
*/

#ifndef vtkSimpleCellTessellator_h
#define vtkSimpleCellTessellator_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkGenericCellTessellator.h"

class vtkTriangleTile;
class vtkTetraTile;
class vtkCellArray;
class vtkDoubleArray;
class vtkGenericEdgeTable;
class vtkGenericSubdivisionErrorMetric;
class vtkGenericAttributeCollection;
class vtkGenericAdaptorCell;
class vtkGenericCellIterator;
class vtkPointData;
class vtkOrderedTriangulator;
class vtkPolygon;
class vtkIdList;

//-----------------------------------------------------------------------------
//
// The tessellation object
class VTKCOMMONDATAMODEL_EXPORT vtkSimpleCellTessellator : public vtkGenericCellTessellator
{
public:
  static vtkSimpleCellTessellator *New();
  vtkTypeMacro(vtkSimpleCellTessellator,vtkGenericCellTessellator);
  void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;

  //@{
  /**
   * Get the higher order cell in order to access the evaluation function.
   */
  vtkGetObjectMacro(GenericCell, vtkGenericAdaptorCell);
  //@}

  /**
   * Tessellate a face of a 3D `cell'. The face is specified by the
   * index value.
   * The result is a set of smaller linear triangles in `cellArray' with
   * `points' and point data `internalPd'.
   * \pre cell_exists: cell!=0
   * \pre valid_dimension: cell->GetDimension()==3
   * \pre valid_index_range: (index>=0) && (index<cell->GetNumberOfBoundaries(2))
   * \pre att_exists: att!=0
   * \pre points_exists: points!=0
   * \pre cellArray_exists: cellArray!=0
   * \pre internalPd_exists: internalPd!=0
   */
  void TessellateFace(vtkGenericAdaptorCell *cell,
                      vtkGenericAttributeCollection *att,
                      vtkIdType index,
                      vtkDoubleArray *points,
                      vtkCellArray *cellArray,
                      vtkPointData *internalPd) VTK_OVERRIDE;

  /**
   * Tessellate a 3D `cell'. The result is a set of smaller linear
   * tetrahedra in `cellArray' with `points' and point data `internalPd'.
   * \pre cell_exists: cell!=0
   * \pre valid_dimension: cell->GetDimension()==3
   * \pre att_exists: att!=0
   * \pre points_exists: points!=0
   * \pre cellArray_exists: cellArray!=0
   * \pre internalPd_exists: internalPd!=0
   */
  void Tessellate(vtkGenericAdaptorCell *cell,
                  vtkGenericAttributeCollection *att,
                  vtkDoubleArray *points,
                  vtkCellArray *cellArray,
                  vtkPointData *internalPd ) VTK_OVERRIDE;

  /**
   * Triangulate a 2D `cell'. The result is a set of smaller linear triangles
   * in `cellArray' with `points' and point data `internalPd'.
   * \pre cell_exists: cell!=0
   * \pre valid_dimension: cell->GetDimension()==2
   * \pre att_exists: att!=0
   * \pre points_exists: points!=0
   * \pre cellArray_exists: cellArray!=0
   * \pre internalPd_exists: internalPd!=0
   */
  void Triangulate(vtkGenericAdaptorCell *cell,
                   vtkGenericAttributeCollection *att,
                   vtkDoubleArray *points,
                   vtkCellArray *cellArray,
                   vtkPointData *internalPd) VTK_OVERRIDE;

  /**
   * Reset the output for repeated use of this class.
   */
  void Reset();


  /**
   * Initialize the tessellator with a data set `ds'.
   */
  void Initialize(vtkGenericDataSet *ds) VTK_OVERRIDE;

  /**
   * Return the number of fixed subdivisions. It is used to prevent from
   * infinite loop in degenerated cases. For order 3 or higher, if the
   * inflection point is exactly on the mid-point, error metric will not
   * detect that a subdivision is required. 0 means no fixed subdivision:
   * there will be only adaptive subdivisions.

   * The algorithm first performs `GetFixedSubdivisions' non adaptive
   * subdivisions followed by at most `GetMaxAdaptiveSubdivisions' adaptive
   * subdivisions. Hence, there are at most `GetMaxSubdivisionLevel'
   * subdivisions.
   * \post positive_result: result>=0 && result<=GetMaxSubdivisionLevel()
   */
  int GetFixedSubdivisions();

  /**
   * Return the maximum level of subdivision. It is used to prevent from
   * infinite loop in degenerated cases. For order 3 or higher, if the
   * inflection point is exactly on the mid-point, error metric will not
   * detect that a subdivision is required. 0 means no subdivision,
   * neither fixed nor adaptive.
   * \post positive_result: result>=GetFixedSubdivisions()
   */
  int GetMaxSubdivisionLevel();

  /**
   * Return the maximum number of adaptive subdivisions.
   * \post valid_result: result==GetMaxSubdivisionLevel()-GetFixedSubdivisions()
   */
  int GetMaxAdaptiveSubdivisions();

  /**
   * Set the number of fixed subdivisions. See GetFixedSubdivisions() for
   * more explanations.
   * \pre positive_level: level>=0 && level<=GetMaxSubdivisionLevel()
   * \post is_set: GetFixedSubdivisions()==level
   */
  void SetFixedSubdivisions(int level);

  /**
   * Set the maximum level of subdivision. See GetMaxSubdivisionLevel() for
   * more explanations.
   * \pre positive_level: level>=GetFixedSubdivisions()
   * \post is_set: level==GetMaxSubdivisionLevel()
   */
  void SetMaxSubdivisionLevel(int level);

  /**
   * Set both the number of fixed subdivisions and the maximum level of
   * subdivisions. See GetFixedSubdivisions(), GetMaxSubdivisionLevel() and
   * GetMaxAdaptiveSubdivisions() for more explanations.
   * \pre positive_fixed: fixed>=0
   * \pre valid_range: fixed<=maxLevel
   * \post fixed_is_set: fixed==GetFixedSubdivisions()
   * \post maxLevel_is_set: maxLevel==GetMaxSubdivisionLevel()
   */
  void SetSubdivisionLevels(int fixed,
                            int maxLevel);


protected:
  vtkSimpleCellTessellator();
  ~vtkSimpleCellTessellator() VTK_OVERRIDE;

  /**
   * Extract point `pointId' from the edge table to the output point and output
   * point data.
   */
  void CopyPoint(vtkIdType pointId);

  /**
   * HashTable instead of vtkPointLocator
   */
  vtkGenericEdgeTable *EdgeTable;

  void InsertEdgesIntoEdgeTable( vtkTriangleTile &tri );
  void RemoveEdgesFromEdgeTable( vtkTriangleTile &tri );
  void InsertPointsIntoEdgeTable( vtkTriangleTile &tri );

  void InsertEdgesIntoEdgeTable( vtkTetraTile &tetra );
  void RemoveEdgesFromEdgeTable( vtkTetraTile &tetra );

  /**
   * Initialize `root' with the sub-tetra defined by the `localIds' points on
   * the complex cell, `ids' are the global ids over the mesh of those points.
   * The sub-tetra is also defined by the ids of its edges and of its faces
   * relative to the complex cell. -1 means that the edge or the face of the
   * sub-tetra is not an original edge or face of the complex cell.
   * \pre cell_exists: this->GenericCell!=0
   * \pre localIds_exists: localIds!=0
   * \pre localIds_size: sizeof(localIds)==4
   * \pre ids_exists: ids!=0
   * \pre ids_size: sizeof(ids)==4
   * \pre edgeIds_exists: edgeIds!=0
   * \pre edgeIds_size: sizeof(edgeIds)==6
   * \pre faceIds_exists: faceIds!=0
   * \pre faceIds_size: sizeof(faceIds)==4
   */
  void InitTetraTile(vtkTetraTile &root,
                     vtkIdType *localIds,
                     vtkIdType *ids,
                     int *edgeIds,
                     int *faceIds);

  /**
   * Triangulate a triangle of `cell'. This triangle can be the top-level
   * triangle if the cell is a triangle or a toplevel sub-triangle is the cell
   * is a polygon, or a triangular face of a 3D cell or a top-level
   * sub-triangle of a face of a 3D cell if the face is not a triangle.
   * Arguments `localIds', `ids' and `edgeIds' have the same meaning than
   * for InitTetraTile.
   * \pre cell_exists: cell!=0
   * \pre localIds_exists: localIds!=0
   * \pre localIds_size: sizeof(localIds)==3
   * \pre ids_exists: ids!=0
   * \pre ids_size: sizeof(ids)==3
   * \pre edgeIds_exists: edgeIds!=0
   * \pre edgeIds_size: sizeof(edgeIds)==3
   */
  void TriangulateTriangle(vtkGenericAdaptorCell *cell,
                           vtkIdType *localIds,
                           vtkIdType *ids,
                           int *edgeIds,
                           vtkGenericAttributeCollection *att,
                           vtkDoubleArray *points,
                           vtkCellArray *cellArray,
                           vtkPointData *internalPd);

  /**
   * To access the higher order cell from third party library
   */
  vtkGenericAdaptorCell *GenericCell;

  /**
   * Allocate some memory if Scalars does not exists or is smaller than size.
   * \pre positive_size: size>0
   */
  void AllocateScalars(int size);

  /**
   * Scalar buffer used to save the interpolate values of the attributes
   * The capacity is at least the number of components of the attribute
   * collection ot the current cell.
   */

  // Scalar buffer that stores the global coordinates, parametric coordinates,
  // attributes at left, mid and right point. The format is:
  // lxlylz lrlslt [lalb lcldle...] mxmymz mrmsmt [mamb mcmdme...]
  // rxryrz rrrsrt [rarb rcrdre...]
  // The ScalarsCapacity>=(6+attributeCollection->GetNumberOfComponents())*3

  double *Scalars;
  int ScalarsCapacity;

  /**
   * Number of double value to skip to go to the next point into Scalars array
   * It is 6+attributeCollection->GetNumberOfComponents()
   */
  int PointOffset;

  /**
   * Used to iterate over edges boundaries in GetNumberOfCellsUsingEdges()
   */
  vtkGenericCellIterator    *CellIterator;

  /**
   * To access the higher order field from third party library
   */
  vtkGenericAttributeCollection *AttributeCollection;

  //@{
  /**
   * To avoid New/Delete
   */
  vtkDoubleArray     *TessellatePoints;  //Allow to use GetPointer
  vtkCellArray       *TessellateCellArray;
  vtkPointData *TessellatePointData;
  //@}

  int FindEdgeReferenceCount(double p1[3], double p2[3],
                             vtkIdType &e1, vtkIdType &e2);

  int GetNumberOfCellsUsingFace( int faceId );
  int GetNumberOfCellsUsingEdge( int edgeId );

  /**
   * Is the edge defined by vertices (`p1',`p2') in parametric coordinates on
   * some edge of the original tetrahedron? If yes return on which edge it is,
   * else return -1.
   * \pre p1!=p2
   * \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
   * \post valid_result: (result==-1) || ( result>=0 && result<=5 )
   */
  int IsEdgeOnFace(double p1[3], double p2[3]);

  /**
   * Return 1 if the parent of edge defined by vertices (`p1',`p2') in
   * parametric coordinates, is an edge; 3 if there is no parent (the edge is
   * inside). If the parent is an edge, return its id in `localId'.
   * \pre p1!=p2
   * \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
   * \post valid_result: (result==1)||(result==3)
   */
  int FindEdgeParent2D(double p1[3], double p2[3], int &localId);

  /**
   * Return 1 if the parent of edge defined by vertices (`p1',`p2') in
   * parametric coordinates, is an edge; 2 if the parent is a face, 3 if there
   * is no parent (the edge is inside). If the parent is an edge or a face,
   * return its id in `localId'.
   * \pre p1!=p2
   * \pre p1 and p2 are in bounding box (0,0,0) (1,1,1)
   * \post valid_result: result>=1 && result<=3
   */
  int FindEdgeParent(double p1[3], double p2[3], int &localId);

  /**
   * Allocate some memory if PointIds does not exist or is smaller than size.
   * \pre positive_size: size>0
   */
  void AllocatePointIds(int size);

  /**
   * Are the faces `originalFace' and `face' equal?
   * The result is independent from any order or orientation.
   * \pre originalFace_exists: originalFace!=0
   */
  int FacesAreEqual(int *originalFace,
                    int face[3]);

  /**
   * Dataset to be tessellated.
   */
  vtkGenericDataSet *DataSet;

  /**
   * Number of points in the dataset to be tessellated.
   */
  vtkIdType NumberOfPoints;

  int FixedSubdivisions;
  int MaxSubdivisionLevel;
  int CurrentSubdivisionLevel;

  /**
   * For each edge (6) of the sub-tetra, there is the id of the original edge
   * or -1 if the edge is not an original edge
   */
  int *EdgeIds;
  /**
   * For each face (4) of the sub-tetra, there is the id of the original face
   * or -1 if the face is not an original face
   */
  int *FaceIds;

  // The following variables are for complex cells.

  // Used to create tetra from more complex cells, because the tessellator
  // is supposed to deal with simplices only.
  vtkOrderedTriangulator *Triangulator;

  // Used to store the sub-tetra during the tessellation of complex
  // cells.
  vtkCellArray *Connectivity;

  // Used to create triangles from a face of a complex cell.
  vtkPolygon *Polygon;

  // Used to store the sub-triangles during the tessellation of complex cells.
  vtkIdList *TriangleIds;

  vtkIdType *PointIds;
  int PointIdsCapacity;

private:
  vtkSimpleCellTessellator(const vtkSimpleCellTessellator&) VTK_DELETE_FUNCTION;
  void operator=(const vtkSimpleCellTessellator&) VTK_DELETE_FUNCTION;

  friend class vtkTetraTile;
  friend class vtkTriangleTile;

};

#endif