This file is indexed.

/usr/include/vtk-7.1/vtkShepardMethod.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkShepardMethod.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkShepardMethod
 * @brief   interpolate points and associated scalars onto volume
 * using the method of Shepard
 *
 *
 * vtkShepardMethod is a filter used to interpolate point scalar values using
 * Shepard's method. The method works by resampling the scalars associated
 * with points defined on an arbitrary dataset onto a volume (i.e.,
 * structured points) dataset. The influence functions are described as
 * "inverse distance weighted". Once the interpolation is performed across
 * the volume, the usual volume visualization techniques (e.g.,
 * iso-contouring or volume rendering) can be used.
 *
 * Note that this implementation also provides the ability to specify the
 * power parameter p. Given the generalized Inverse Distance Weighting (IDW)
 * function with distance between points measured as d(x,xi), p is defined
 * as:
 * <pre>
 * u(x) = Sum(wi(x) * ui) / Sum(wi(x)) if d(x,xi) != 0
 * u(x) = ui                           if d(x,xi) == 0
 *
 * where wi(x) = 1 / (d(x,xi)^p
 * </pre>
 * Typically p=2, so the weights wi(x) are the inverse of the distance
 * squared. However, power parameters > 2 can be used which assign higher
 * weights for data closer to the interpolated point; or <2 which assigns
 * greater weight to points further away. (Note that if p!=2, performance may
 * be significantly impacted as the algorihm is tuned for p=2.)
 *
 * @warning
 * Strictly speaking, this is a modified Shepard's methodsince only points
 * within the MaxiumDistance are used for interpolation. By setting the
 * maximum distance to include the entire bounding box and therefore all
 * points, the class executes much slower but incorporates all points into
 * the interpolation process (i.e., a pure Shepard method).
 *
 * @warning
 * The input to this filter is any dataset type. This filter can be used to
 * resample the points of any type of dataset onto the output volume; i.e.,
 * the input data need not be unstructured with explicit point
 * representations.
 *
 * @warning
 * The bounds of the data (i.e., the sample space) is automatically computed
 * if not set by the user.
 *
 * @warning
 * If you use a maximum distance less than 1.0 (i.e., using a modified
 * Shephard's method), some output points may never receive a
 * contribution. The final value of these points can be specified with the
 * "NullValue" instance variable.
 *
 * @warning
 * This class has been threaded with vtkSMPTools. Using TBB or other
 * non-sequential type (set in the CMake variable
 * VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
 *
 * @sa
 * vtkGaussianSplatter vtkCheckerboardSplatter
*/

#ifndef vtkShepardMethod_h
#define vtkShepardMethod_h

#include "vtkImagingHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"

class VTKIMAGINGHYBRID_EXPORT vtkShepardMethod : public vtkImageAlgorithm
{
public:
  //@{
  /**
   * Standard type and print methods.
   */
  vtkTypeMacro(vtkShepardMethod,vtkImageAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);
  //@}

  /**
   * Construct with sample dimensions=(50,50,50) and so that model bounds are
   * automatically computed from the input. The null value for each unvisited
   * output point is 0.0. Maximum distance is 0.25. Power parameter p=2.
   */
  static vtkShepardMethod *New();

  /**
   * Set the i-j-k dimensions on which to interpolate the input points.
   */
  void SetSampleDimensions(int i, int j, int k);

  /**
   * Set the i-j-k dimensions on which to sample the input points.
   */
  void SetSampleDimensions(int dim[3]);

  //@{
  /**
   * Retrieve the i-j-k dimensions on which to interpolate the  input points.
   */
  vtkGetVectorMacro(SampleDimensions,int,3);
  //@}

  //@{
  /**
   * Specify the maximum influence distance of each input point. This
   * distance is a fraction of the length of the diagonal of the sample
   * space. Thus, values of 1.0 will cause each input point to influence all
   * points in the volume dataset. Values less than 1.0 can improve
   * performance significantly. By default the maximum distance is 0.25.
   */
  vtkSetClampMacro(MaximumDistance,double,0.0,1.0);
  vtkGetMacro(MaximumDistance,double);
  //@}

  //@{
  /**
   * Set the value for output points not receiving a contribution from any
   * input point(s). Output points may not receive a contribution when the
   * MaximumDistance < 1.
   */
  vtkSetMacro(NullValue,double);
  vtkGetMacro(NullValue,double);
  //@}

  //@{
  /**
   * Specify the position in space to perform the sampling. The ModelBounds
   * and SampleDimensions together define the output volume. (Note: if the
   * ModelBounds are set to an invalid state [zero or negative volume] then
   * the bounds are computed automatically.)
   */
  vtkSetVector6Macro(ModelBounds,double);
  vtkGetVectorMacro(ModelBounds,double,6);
  //@}

  //@{
  /**
   * Set / Get the power parameter p. By default p=2. Values (which must be
   * a positive, real value) != 2 may affect performance significantly.
   */
  vtkSetClampMacro(PowerParameter,double,0.001,100);
  vtkGetMacro(PowerParameter,double);
  //@}

  /**
   * Compute ModelBounds from the input geometry.
   */
  double ComputeModelBounds(double origin[3], double ar[3]);

protected:
  vtkShepardMethod();
  ~vtkShepardMethod() {}

  virtual int RequestInformation (vtkInformation *,
                                  vtkInformationVector **,
                                  vtkInformationVector *);

  // see vtkAlgorithm for details
  virtual int RequestData(vtkInformation *request,
                          vtkInformationVector** inputVector,
                          vtkInformationVector* outputVector);

  // see algorithm for more info
  virtual int FillInputPortInformation(int port, vtkInformation* info);

  int SampleDimensions[3];
  double MaximumDistance;
  double ModelBounds[6];
  double NullValue;
  double PowerParameter;

private:
  vtkShepardMethod(const vtkShepardMethod&) VTK_DELETE_FUNCTION;
  void operator=(const vtkShepardMethod&) VTK_DELETE_FUNCTION;
};

#endif