/usr/include/vtk-7.1/vtkReebGraph.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkReebGraph.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/*----------------------------------------------------------------------------
Copyright (c) Sandia Corporation
See Copyright.txt or http://www.paraview.org/HTML/Copyright.html for details.
----------------------------------------------------------------------------*/
/**
* @class vtkReebGraph
* @brief Reeb graph computation for PL scalar fields.
*
*
* vtkReebGraph is a class that computes a Reeb graph given a PL scalar
* field (vtkDataArray) defined on a simplicial mesh.
* A Reeb graph is a concise representation of the connectivity evolution of
* the level sets of a scalar function.
*
* It is particularly useful in visualization (optimal seed set computation,
* fast flexible isosurface extraction, automated transfer function design,
* feature-driven visualization, etc.) and computer graphics (shape
* deformation, shape matching, shape compression, etc.).
*
* Reference:
* "Sur les points singuliers d'une forme de Pfaff completement integrable ou
* d'une fonction numerique",
* G. Reeb,
* Comptes-rendus de l'Academie des Sciences, 222:847-849, 1946.
*
* vtkReebGraph implements one of the latest and most robust Reeb graph
* computation algorithms.
*
* Reference:
* "Robust on-line computation of Reeb graphs: simplicity and speed",
* V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas,
* ACM Transactions on Graphics, Proc. of SIGGRAPH 2007.
*
* vtkReebGraph provides methods for computing multi-resolution topological
* hierarchies through topological simplification.
* Topoligical simplification can be either driven by persistence homology
* concepts (default behavior) or by application specific metrics (see
* vtkReebGraphSimplificationMetric).
* In the latter case, designing customized simplification metric evaluation
* algorithms enables the user to control the definition of what should be
* considered as noise or signal in the topological filtering process.
*
* References:
* "Topological persistence and simplification",
* H. Edelsbrunner, D. Letscher, and A. Zomorodian,
* Discrete Computational Geometry, 28:511-533, 2002.
*
* "Extreme elevation on a 2-manifold",
* P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang,
* ACM Symposium on Computational Geometry, pp. 357-365, 2004.
*
* "Simplifying flexible isosurfaces using local geometric measures",
* H. Carr, J. Snoeyink, M van de Panne,
* IEEE Visualization, 497-504, 2004
*
* "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees",
* J. Tierny, A. Gyulassy, E. Simon, V. Pascucci,
* IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184, 2009.
*
*
*
* Reeb graphs can be computed from 2D data (vtkPolyData, with triangles only)
* or 3D data (vtkUnstructuredGrid, with tetrahedra only), sequentially (see
* the "Build" calls) or in streaming (see the "StreamTriangle" and
* "StreamTetrahedron" calls).
*
* vtkReebGraph inherits from vtkMutableDirectedGraph.
*
* Each vertex of a vtkReebGraph object represents a critical point of the
* scalar field where the connectivity of the related level set changes
* (creation, deletion, split or merge of connected components).
* A vtkIdTypeArray (called "Vertex Ids") is associated with the VertexData of
* a vtkReebGraph object, in order to retrieve if necessary the exact Ids of
* the corresponding vertices in the input mesh.
*
* The edges of a vtkReebGraph object represent the regions of the input mesh
* separated by the critical contours of the field, and where the connectivity
* of the input field does not change.
* A vtkVariantArray is associated with the EdgeDta of a vtkReebGraph object and
* each entry of this array is a vtkAbstractArray containing the Ids of the
* vertices of those regions, sorted by function value (useful for flexible
* isosurface extraction or level set signature computation, for instance).
*
* See Graphics/Testing/Cxx/TestReebGraph.cxx for examples of traversals and
* typical usages (customized simplification, skeletonization, contour spectra,
* etc.) of a vtkReebGraph object.
*
*
* @sa
* vtkReebGraphSimplificationMetric
* vtkPolyDataToReebGraphFilter
* vtkUnstructuredGridToReebGraphFilter
* vtkReebGraphSimplificationFilter
* vtkReebGraphSurfaceSkeletonFilter
* vtkReebGraphVolumeSkeletonFilter
* vtkAreaContourSpectrumFilter
* vtkVolumeContourSpectrumFilter
*
* @par Tests:
* Graphics/Testing/Cxx/TestReebGraph.cxx
*/
#ifndef vtkReebGraph_h
#define vtkReebGraph_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkMutableDirectedGraph.h"
class vtkDataArray;
class vtkDataSet;
class vtkIdList;
class vtkPolyData;
class vtkReebGraphSimplificationMetric;
class vtkUnstructuredGrid;
class VTKCOMMONDATAMODEL_EXPORT vtkReebGraph : public vtkMutableDirectedGraph
{
public:
static vtkReebGraph *New();
vtkTypeMacro(vtkReebGraph, vtkMutableDirectedGraph);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
void PrintNodeData(ostream& os, vtkIndent indent);
/**
* Return class name of data type. This is one of VTK_STRUCTURED_GRID,
* VTK_STRUCTURED_POINTS, VTK_UNSTRUCTURED_GRID, VTK_POLY_DATA, or
* VTK_RECTILINEAR_GRID (see vtkSetGet.h for definitions).
* THIS METHOD IS THREAD SAFE
*/
int GetDataObjectType() VTK_OVERRIDE {return VTK_REEB_GRAPH;}
enum
{
ERR_INCORRECT_FIELD = -1,
ERR_NO_SUCH_FIELD = -2,
ERR_NOT_A_SIMPLICIAL_MESH = -3
};
/**
* Build the Reeb graph of the field 'scalarField' defined on the surface
* mesh 'mesh'.
* Returned values:
* vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many
* tuples as 'mesh' has vertices.
* vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a
* simplicial mesh (for example, the surface mesh contains quads instead of
* triangles).
*/
int Build(vtkPolyData *mesh, vtkDataArray *scalarField);
/**
* Build the Reeb graph of the field 'scalarField' defined on the volume
* mesh 'mesh'.
* Returned values:
* vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many
* tuples as 'mesh' has vertices.
* vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a
* simplicial mesh.
*/
int Build(vtkUnstructuredGrid *mesh, vtkDataArray *scalarField);
/**
* Build the Reeb graph of the field given by the Id 'scalarFieldId',
* defined on the surface mesh 'mesh'.
* Returned values:
* vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many
* tuples as 'mesh' as vertices.
* vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a
* simplicial mesh (for example, the surface mesh contains quads instead of
* triangles).
* vtkReebGraph::ERR_NO_SUCH_FIELD: the scalar field given by the Id
* 'scalarFieldId' does not exist.
*/
int Build(vtkPolyData *mesh, vtkIdType scalarFieldId);
/**
* Build the Reeb graph of the field given by the Id 'scalarFieldId',
* defined on the volume mesh 'mesh'.
* Returned values:
* vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many
* tuples as 'mesh' as vertices.
* vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a
* simplicial mesh.
* vtkReebGraph::ERR_NO_SUCH_FIELD: the scalar field given by the Id
* 'scalarFieldId' does not exist.
*/
int Build(vtkUnstructuredGrid *mesh, vtkIdType scalarFieldId);
/**
* Build the Reeb graph of the field given by the name 'scalarFieldName',
* defined on the surface mesh 'mesh'.
* Returned values:
* vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many
* tuples as 'mesh' as vertices.
* vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a
* simplicial mesh (for example, the surface mesh contains quads instead of
* triangles).
* vtkReebGraph::ERR_NO_SUCH_FIELD: the scalar field given by the name
* 'scalarFieldName' does not exist.
*/
int Build(vtkPolyData *mesh, const char* scalarFieldName);
/**
* Build the Reeb graph of the field given by the name 'scalarFieldName',
* defined on the volume mesh 'mesh'.
* Returned values:
* vtkReebGraph::ERR_INCORRECT_FIELD: 'scalarField' does not have as many
* tuples as 'mesh' as vertices.
* vtkReebGraph::ERR_NOT_A_SIMPLICIAL_MESH: the input mesh 'mesh' is not a
* simplicial mesh.
* vtkReebGraph::ERR_NO_SUCH_FIELD: the scalar field given by the name
* 'scalarFieldName' does not exist.
*/
int Build(vtkUnstructuredGrid *mesh, const char* scalarFieldName);
/**
* Streaming Reeb graph computation.
* Add to the streaming computation the triangle of the vtkPolyData surface
* mesh described by
* vertex0Id, scalar0
* vertex1Id, scalar1
* vertex2Id, scalar2
* where vertex<i>Id is the Id of the vertex in the vtkPolyData structure
* and scalar<i> is the corresponding scalar field value.
* IMPORTANT: The stream _must_ be finalized with the "CloseStream" call.
*/
int StreamTriangle( vtkIdType vertex0Id, double scalar0,
vtkIdType vertex1Id, double scalar1,
vtkIdType vertex2Id, double scalar2);
/**
* Streaming Reeb graph computation.
* Add to the streaming computation the tetrahedra of the vtkUnstructuredGrid
* volume mesh described by
* vertex0Id, scalar0
* vertex1Id, scalar1
* vertex2Id, scalar2
* vertex3Id, scalar3
* where vertex<i>Id is the Id of the vertex in the vtkUnstructuredGrid
* structure and scalar<i> is the corresponding scalar field value.
* IMPORTANT: The stream _must_ be finalized with the "CloseStream" call.
*/
int StreamTetrahedron( vtkIdType vertex0Id, double scalar0,
vtkIdType vertex1Id, double scalar1,
vtkIdType vertex2Id, double scalar2,
vtkIdType vertex3Id, double scalar3);
/**
* Finalize internal data structures, in the case of streaming computations
* (with StreamTriangle or StreamTetrahedron).
* After this call, no more triangle or tetrahedron can be inserted via
* StreamTriangle or StreamTetrahedron.
* IMPORTANT: This method _must_ be called when the input stream is finished.
* If you need to get a snapshot of the Reeb graph during the streaming
* process (to parse or simplify it), do a DeepCopy followed by a
* CloseStream on the copy.
*/
void CloseStream();
// Descrition:
// Implements deep copy
void DeepCopy(vtkDataObject *src) VTK_OVERRIDE;
/**
* Simplify the Reeb graph given a threshold 'simplificationThreshold'
* (between 0 and 1).
* This method is the core feature for Reeb graph multi-resolution hierarchy
* construction.
* Return the number of arcs that have been removed through the simplification
* process.
* 'simplificationThreshold' represents a "scale", under which each Reeb graph
* feature is considered as noise. 'simplificationThreshold' is expressed as a
* fraction of the scalar field overall span. It can vary from 0
* (no simplification) to 1 (maximal simplification).
* 'simplificationMetric' is an object in charge of evaluating the importance
* of a Reeb graph arc at each step of the simplification process.
* if 'simplificationMetric' is NULL, the default strategy (persitence of the
* scalar field) is used.
* Customized simplification metric evaluation algorithm can be designed (see
* vtkReebGraphSimplificationMetric), enabling the user to control the
* definition of what should be considered as noise or signal.
* References:
* "Topological persistence and simplification",
* H. Edelsbrunner, D. Letscher, and A. Zomorodian,
* Discrete Computational Geometry, 28:511-533, 2002.
* "Extreme elevation on a 2-manifold",
* P.K. Agarwal, H. Edelsbrunner, J. Harer, and Y. Wang,
* ACM Symposium on Computational Geometry, pp. 357-365, 2004.
* "Simplifying flexible isosurfaces using local geometric measures",
* H. Carr, J. Snoeyink, M van de Panne,
* IEEE Visualization, 497-504, 2004
* "Loop surgery for volumetric meshes: Reeb graphs reduced to contour trees",
* J. Tierny, A. Gyulassy, E. Simon, V. Pascucci,
* IEEE Trans. on Vis. and Comp. Graph. (Proc of IEEE VIS), 15:1177-1184,2009.
*/
int Simplify(double simplificationThreshold,
vtkReebGraphSimplificationMetric *simplificationMetric);
/**
* Use a pre-defined Reeb graph (post-processing).
* Use with caution!
*/
void Set(vtkMutableDirectedGraph *g);
protected:
vtkReebGraph();
~vtkReebGraph() VTK_OVERRIDE;
class Implementation;
Implementation* Storage;
private:
vtkReebGraph(const vtkReebGraph&) VTK_DELETE_FUNCTION;
void operator=(const vtkReebGraph&) VTK_DELETE_FUNCTION;
};
#endif
|