This file is indexed.

/usr/include/vtk-7.1/vtkQuadraticTetra.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkQuadraticTetra.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkQuadraticTetra
 * @brief   cell represents a parabolic, 10-node isoparametric tetrahedron
 *
 * vtkQuadraticTetra is a concrete implementation of vtkNonLinearCell to
 * represent a three-dimensional, 10-node, isoparametric parabolic
 * tetrahedron. The interpolation is the standard finite element, quadratic
 * isoparametric shape function. The cell includes a mid-edge node on each of
 * the size edges of the tetrahedron. The ordering of the ten points defining
 * the cell is point ids (0-3,4-9) where ids 0-3 are the four tetra
 * vertices; and point ids 4-9 are the midedge nodes between (0,1), (1,2),
 * (2,0), (0,3), (1,3), and (2,3).
 *
 * Note that this class uses an internal linear tesselation for some internal operations
 * (e.g., clipping and contouring). This means that some artifacts may appear trying to
 * represent a non-linear interpolation function with linear tets.
 *
 * @sa
 * vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticWedge
 * vtkQuadraticQuad vtkQuadraticHexahedron vtkQuadraticPyramid
*/

#ifndef vtkQuadraticTetra_h
#define vtkQuadraticTetra_h

#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"

class vtkQuadraticEdge;
class vtkQuadraticTriangle;
class vtkTetra;
class vtkDoubleArray;

class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticTetra : public vtkNonLinearCell
{
public:
  static vtkQuadraticTetra *New();
  vtkTypeMacro(vtkQuadraticTetra,vtkNonLinearCell);
  void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;

  //@{
  /**
   * Implement the vtkCell API. See the vtkCell API for descriptions
   * of these methods.
   */
  int GetCellType() VTK_OVERRIDE {return VTK_QUADRATIC_TETRA;}
  int GetCellDimension() VTK_OVERRIDE {return 3;}
  int GetNumberOfEdges() VTK_OVERRIDE {return 6;}
  int GetNumberOfFaces() VTK_OVERRIDE {return 4;}
  vtkCell *GetEdge(int) VTK_OVERRIDE;
  vtkCell *GetFace(int) VTK_OVERRIDE;
  //@}

  int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) VTK_OVERRIDE;
  void Contour(double value, vtkDataArray *cellScalars,
               vtkIncrementalPointLocator *locator, vtkCellArray *verts,
               vtkCellArray *lines, vtkCellArray *polys,
               vtkPointData *inPd, vtkPointData *outPd,
               vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) VTK_OVERRIDE;
  int EvaluatePosition(double x[3], double* closestPoint,
                       int& subId, double pcoords[3],
                       double& dist2, double *weights) VTK_OVERRIDE;
  void EvaluateLocation(int& subId, double pcoords[3], double x[3],
                        double *weights) VTK_OVERRIDE;
  int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) VTK_OVERRIDE;
  void Derivatives(int subId, double pcoords[3], double *values,
                   int dim, double *derivs) VTK_OVERRIDE;
  double *GetParametricCoords() VTK_OVERRIDE;

  /**
   * Clip this edge using scalar value provided. Like contouring, except
   * that it cuts the tetra to produce new tetras.
   */
  void Clip(double value, vtkDataArray *cellScalars,
            vtkIncrementalPointLocator *locator, vtkCellArray *tetras,
            vtkPointData *inPd, vtkPointData *outPd,
            vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
            int insideOut) VTK_OVERRIDE;

  /**
   * Line-edge intersection. Intersection has to occur within [0,1] parametric
   * coordinates and with specified tolerance.
   */
  int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
                        double x[3], double pcoords[3], int& subId) VTK_OVERRIDE;


  /**
   * Return the center of the quadratic tetra in parametric coordinates.
   */
  int GetParametricCenter(double pcoords[3]) VTK_OVERRIDE;

  /**
   * Return the distance of the parametric coordinate provided to the
   * cell. If inside the cell, a distance of zero is returned.
   */
  double GetParametricDistance(double pcoords[3]) VTK_OVERRIDE;

  /**
   * @deprecated Replaced by vtkQuadraticTetra::InterpolateFunctions as of VTK 5.2
   */
  static void InterpolationFunctions(double pcoords[3], double weights[10]);
  /**
   * @deprecated Replaced by vtkQuadraticTetra::InterpolateDerivs as of VTK 5.2
   */
  static void InterpolationDerivs(double pcoords[3], double derivs[30]);
  //@{
  /**
   * Compute the interpolation functions/derivatives
   * (aka shape functions/derivatives)
   */
  void InterpolateFunctions(double pcoords[3], double weights[10]) VTK_OVERRIDE
  {
    vtkQuadraticTetra::InterpolationFunctions(pcoords,weights);
  }
  void InterpolateDerivs(double pcoords[3], double derivs[30]) VTK_OVERRIDE
  {
    vtkQuadraticTetra::InterpolationDerivs(pcoords,derivs);
  }
  //@}
  //@{
  /**
   * Return the ids of the vertices defining edge/face (`edgeId`/`faceId').
   * Ids are related to the cell, not to the dataset.
   */
  static int *GetEdgeArray(int edgeId);
  static int *GetFaceArray(int faceId);
  //@}

  /**
   * Given parametric coordinates compute inverse Jacobian transformation
   * matrix. Returns 9 elements of 3x3 inverse Jacobian plus interpolation
   * function derivatives.
   */
  void JacobianInverse(double pcoords[3], double **inverse, double derivs[30]);

protected:
  vtkQuadraticTetra();
  ~vtkQuadraticTetra() VTK_OVERRIDE;

  vtkQuadraticEdge *Edge;
  vtkQuadraticTriangle *Face;
  vtkTetra *Tetra;
  vtkDoubleArray *Scalars; //used to avoid New/Delete in contouring/clipping

private:
  vtkQuadraticTetra(const vtkQuadraticTetra&) VTK_DELETE_FUNCTION;
  void operator=(const vtkQuadraticTetra&) VTK_DELETE_FUNCTION;
};

#endif