/usr/include/vtk-7.1/vtkQuadraticQuad.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkQuadraticQuad.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkQuadraticQuad
* @brief cell represents a parabolic, 8-node isoparametric quad
*
* vtkQuadraticQuad is a concrete implementation of vtkNonLinearCell to
* represent a two-dimensional, 8-node isoparametric parabolic quadrilateral
* element. The interpolation is the standard finite element, quadratic
* isoparametric shape function. The cell includes a mid-edge node for each
* of the four edges of the cell. The ordering of the eight points defining
* the cell are point ids (0-3,4-7) where ids 0-3 define the four corner
* vertices of the quad; ids 4-7 define the midedge nodes (0,1), (1,2),
* (2,3), (3,0).
*
* @sa
* vtkQuadraticEdge vtkQuadraticTriangle vtkQuadraticTetra
* vtkQuadraticHexahedron vtkQuadraticWedge vtkQuadraticPyramid
*/
#ifndef vtkQuadraticQuad_h
#define vtkQuadraticQuad_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkQuadraticEdge;
class vtkQuad;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkQuadraticQuad : public vtkNonLinearCell
{
public:
static vtkQuadraticQuad *New();
vtkTypeMacro(vtkQuadraticQuad,vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
//@{
/**
* Implement the vtkCell API. See the vtkCell API for descriptions
* of these methods.
*/
int GetCellType() VTK_OVERRIDE {return VTK_QUADRATIC_QUAD;};
int GetCellDimension() VTK_OVERRIDE {return 2;}
int GetNumberOfEdges() VTK_OVERRIDE {return 4;}
int GetNumberOfFaces() VTK_OVERRIDE {return 0;}
vtkCell *GetEdge(int) VTK_OVERRIDE;
vtkCell *GetFace(int) VTK_OVERRIDE {return 0;}
//@}
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) VTK_OVERRIDE;
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) VTK_OVERRIDE;
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights) VTK_OVERRIDE;
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights) VTK_OVERRIDE;
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) VTK_OVERRIDE;
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs) VTK_OVERRIDE;
double *GetParametricCoords() VTK_OVERRIDE;
/**
* Clip this quadratic quad using scalar value provided. Like contouring,
* except that it cuts the quad to produce linear triangles.
*/
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut) VTK_OVERRIDE;
/**
* Line-edge intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId) VTK_OVERRIDE;
/**
* Return the center of the pyramid in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) VTK_OVERRIDE;
/**
* @deprecated Replaced by vtkQuadraticQuad::InterpolateFunctions as of VTK 5.2
*/
static void InterpolationFunctions(double pcoords[3], double weights[8]);
/**
* @deprecated Replaced by vtkQuadraticQuad::InterpolateDerivs as of VTK 5.2
*/
static void InterpolationDerivs(double pcoords[3], double derivs[16]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(double pcoords[3], double weights[8]) VTK_OVERRIDE
{
vtkQuadraticQuad::InterpolationFunctions(pcoords,weights);
}
void InterpolateDerivs(double pcoords[3], double derivs[16]) VTK_OVERRIDE
{
vtkQuadraticQuad::InterpolationDerivs(pcoords,derivs);
}
//@}
protected:
vtkQuadraticQuad();
~vtkQuadraticQuad() VTK_OVERRIDE;
vtkQuadraticEdge *Edge;
vtkQuad *Quad;
vtkPointData *PointData;
vtkDoubleArray *Scalars;
// In order to achieve some functionality we introduce a fake center point
// which require to have some extra functionalities compare to other non-linar
// cells
vtkCellData *CellData;
vtkDoubleArray *CellScalars;
void Subdivide(double *weights);
void InterpolateAttributes(vtkPointData *inPd, vtkCellData *inCd, vtkIdType cellId,
vtkDataArray *cellScalars);
private:
vtkQuadraticQuad(const vtkQuadraticQuad&) VTK_DELETE_FUNCTION;
void operator=(const vtkQuadraticQuad&) VTK_DELETE_FUNCTION;
};
//----------------------------------------------------------------------------
inline int vtkQuadraticQuad::GetParametricCenter(double pcoords[3])
{
pcoords[0] = pcoords[1] = 0.5;
pcoords[2] = 0.;
return 0;
}
#endif
|