/usr/include/vtk-7.1/vtkPolygon.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkPolygon.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkPolygon
* @brief a cell that represents an n-sided polygon
*
* vtkPolygon is a concrete implementation of vtkCell to represent a 2D
* n-sided polygon. The polygons cannot have any internal holes, and cannot
* self-intersect. Define the polygon with n-points ordered in the counter-
* clockwise direction; do not repeat the last point.
*/
#ifndef vtkPolygon_h
#define vtkPolygon_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell.h"
class vtkDoubleArray;
class vtkIdTypeArray;
class vtkLine;
class vtkPoints;
class vtkQuad;
class vtkTriangle;
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkPolygon : public vtkCell
{
public:
static vtkPolygon *New();
vtkTypeMacro(vtkPolygon,vtkCell);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() VTK_OVERRIDE {return VTK_POLYGON;};
int GetCellDimension() VTK_OVERRIDE {return 2;};
int GetNumberOfEdges() VTK_OVERRIDE {return this->GetNumberOfPoints();};
int GetNumberOfFaces() VTK_OVERRIDE {return 0;};
vtkCell *GetEdge(int edgeId) VTK_OVERRIDE;
vtkCell *GetFace(int) VTK_OVERRIDE {return 0;};
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) VTK_OVERRIDE;
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator,vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) VTK_OVERRIDE;
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *tris,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut) VTK_OVERRIDE;
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights) VTK_OVERRIDE;
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights) VTK_OVERRIDE;
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId) VTK_OVERRIDE;
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) VTK_OVERRIDE;
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs) VTK_OVERRIDE;
int IsPrimaryCell() VTK_OVERRIDE {return 0;}
//@}
/**
* Compute the area of a polygon. This is a convenience function
* which simply calls static double ComputeArea(vtkPoints *p,
* vtkIdType numPts, vtkIdType *pts, double normal[3]);
* with the appropriate parameters from the instantiated vtkPolygon.
*/
double ComputeArea();
/**
* Compute the interpolation functions/derivatives.
* (aka shape functions/derivatives)
* Two interpolation algorithms are available: 1/r^2 and Mean Value
* Coordinate. The former is used by default. To use the second algorithm,
* set UseMVCInterpolation to be true.
* The function assumes the input point lies on the polygon plane without
* checking that.
*/
void InterpolateFunctions(double x[3], double *sf) VTK_OVERRIDE;
//@{
/**
* Computes the unit normal to the polygon. If pts=NULL, point indexing is
* assummed to be {0, 1, ..., numPts-1}.
*/
static void ComputeNormal(vtkPoints *p, int numPts, vtkIdType *pts,
double n[3]);
static void ComputeNormal(vtkPoints *p, double n[3]);
static void ComputeNormal(vtkIdTypeArray *ids, vtkPoints *pts, double n[3]);
//@}
/**
* Compute the polygon normal from an array of points. This version assumes
* that the polygon is convex, and looks for the first valid normal.
*/
static void ComputeNormal(int numPts, double *pts, double n[3]);
/**
* Determine whether or not a polygon is convex. This is a convenience
* function that simply calls static bool IsConvex(int numPts,
* vtkIdType *pts, vtkPoints *p) with the appropriate parameters from the
* instantiated vtkPolygon.
*/
bool IsConvex();
//@{
/**
* Determine whether or not a polygon is convex. If pts=NULL, point indexing
* is assummed to be {0, 1, ..., numPts-1}.
*/
static bool IsConvex(vtkPoints *p, int numPts, vtkIdType *pts);
static bool IsConvex(vtkIdTypeArray *ids, vtkPoints *p);
static bool IsConvex(vtkPoints *p);
//@}
//@{
/**
* Compute the centroid of a set of points. Returns false if the computation
* is invalid (this occurs when numPts=0 or when ids is empty).
*/
static bool ComputeCentroid(vtkPoints *p, int numPts, vtkIdType *pts,
double centroid[3]);
static bool ComputeCentroid(vtkIdTypeArray *ids, vtkPoints *pts,
double centroid[3]);
//@}
/**
* Compute the area of a polygon in 3D. The area is returned, as well as
* the normal (a side effect of using this method). If you desire to
* compute the area of a triangle, use vtkTriangleArea which is faster.
* If you already have a vtkPolygon instantiated, a convenience function,
* ComputeArea() is provided.
*/
static double ComputeArea(vtkPoints *p, vtkIdType numPts, vtkIdType *pts,
double normal[3]);
/**
* Create a local s-t coordinate system for a polygon. The point p0 is
* the origin of the local system, p10 is s-axis vector, and p20 is the
* t-axis vector. (These are expressed in the modeling coordinate system and
* are vectors of dimension [3].) The values l20 and l20 are the lengths of
* the vectors p10 and p20, and n is the polygon normal.
*/
int ParameterizePolygon(double p0[3], double p10[3], double &l10,
double p20[3], double &l20, double n[3]);
/**
* Determine whether point is inside polygon. Function uses ray-casting
* to determine if point is inside polygon. Works for arbitrary polygon shape
* (e.g., non-convex). Returns 0 if point is not in polygon; 1 if it is.
* Can also return -1 to indicate degenerate polygon.
*/
static int PointInPolygon(double x[3], int numPts, double *pts,
double bounds[6], double n[3]);
/**
* Triangulate this polygon. The user must provide the vtkIdList outTris.
* On output, the outTris list contains the ids of the points defining
* the triangulation. The ids are ordered into groups of three: each
* three-group defines one triangle.
*/
int Triangulate(vtkIdList *outTris);
/**
* Same as Triangulate(vtkIdList *outTris)
* but with a first pass to split the polygon into non-degenerate polygons.
*/
int NonDegenerateTriangulate(vtkIdList *outTris);
/**
* Compute the distance of a point to a polygon. The closest point on
* the polygon is also returned. The bounds should be provided to
* accelerate the computation.
*/
static double DistanceToPolygon(double x[3], int numPts, double *pts,
double bounds[6], double closest[3]);
/**
* Method intersects two polygons. You must supply the number of points and
* point coordinates (npts, *pts) and the bounding box (bounds) of the two
* polygons. Also supply a tolerance squared for controlling
* error. The method returns 1 if there is an intersection, and 0 if
* not. A single point of intersection x[3] is also returned if there
* is an intersection.
*/
static int IntersectPolygonWithPolygon(int npts, double *pts, double bounds[6],
int npts2, double *pts2,
double bounds2[3], double tol,
double x[3]);
/**
* Intersect two convex 2D polygons to produce a line segment as output.
* The return status of the methods indicated no intersection (returns 0);
* a single point of intersection (returns 1); or a line segment (i.e., two
* points of intersection, returns 2). The points of intersection are
* returned in the arrays p0 and p1. If less than two points of
* intersection are generated then p1 and/or p0 may be
* indeterminiate. Finally, if the two convex polygons are parallel, then
* "0" is returned (i.e., no intersection) even if the triangles lie on one
* another.
*/
static int IntersectConvex2DCells(vtkCell *cell1, vtkCell *cell2,
double tol, double p0[3], double p1[3]);
//@{
/**
* Set/Get the flag indicating whether to use Mean Value Coordinate for the
* interpolation. If true, InterpolateFunctions() uses the Mean Value
* Coordinate to compute weights. Otherwise, the conventional 1/r^2 method
* is used. The UseMVCInterpolation parameter is set to false by default.
*/
vtkGetMacro(UseMVCInterpolation, bool);
vtkSetMacro(UseMVCInterpolation, bool);
//@}
protected:
vtkPolygon();
~vtkPolygon() VTK_OVERRIDE;
// Compute the interpolation functions using Mean Value Coordinate.
void InterpolateFunctionsUsingMVC(double x[3], double *weights);
// variables used by instances of this class
double Tolerance; // Intersection tolerance
int SuccessfulTriangulation; // Stops recursive tri. if necessary
double Normal[3]; //polygon normal
vtkIdList *Tris;
vtkTriangle *Triangle;
vtkQuad *Quad;
vtkDoubleArray *TriScalars;
vtkLine *Line;
// Parameter indicating whether to use Mean Value Coordinate algorithm
// for interpolation. The parameter is false by default.
bool UseMVCInterpolation;
// Helper methods for triangulation------------------------------
/**
* A fast triangulation method. Uses recursive divide and
* conquer based on plane splitting to reduce loop into triangles.
* The cell (e.g., triangle) is presumed properly initialized (i.e.,
* Points and PointIds).
*/
int EarCutTriangulation();
private:
vtkPolygon(const vtkPolygon&) VTK_DELETE_FUNCTION;
void operator=(const vtkPolygon&) VTK_DELETE_FUNCTION;
};
#endif
|