/usr/include/vtk-7.1/vtkPolyData.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkPolyData.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkPolyData
* @brief concrete dataset represents vertices, lines, polygons, and triangle strips
*
* vtkPolyData is a data object that is a concrete implementation of
* vtkDataSet. vtkPolyData represents a geometric structure consisting of
* vertices, lines, polygons, and/or triangle strips. Point and cell
* attribute values (e.g., scalars, vectors, etc.) also are represented.
*
* The actual cell types (vtkCellType.h) supported by vtkPolyData are:
* vtkVertex, vtkPolyVertex, vtkLine, vtkPolyLine, vtkTriangle, vtkQuad,
* vtkPolygon, and vtkTriangleStrip.
*
* One important feature of vtkPolyData objects is that special traversal and
* data manipulation methods are available to process data. These methods are
* generally more efficient than vtkDataSet methods and should be used
* whenever possible. For example, traversing the cells in a dataset we would
* use GetCell(). To traverse cells with vtkPolyData we would retrieve the
* cell array object representing polygons (for example using GetPolys()) and
* then use vtkCellArray's InitTraversal() and GetNextCell() methods.
*
* @warning
* Because vtkPolyData is implemented with four separate instances of
* vtkCellArray to represent 0D vertices, 1D lines, 2D polygons, and 2D
* triangle strips, it is possible to create vtkPolyData instances that
* consist of a mixture of cell types. Because of the design of the class,
* there are certain limitations on how mixed cell types are inserted into
* the vtkPolyData, and in turn the order in which they are processed and
* rendered. To preserve the consistency of cell ids, and to insure that
* cells with cell data are rendered properly, users must insert mixed cells
* in the order of vertices (vtkVertex and vtkPolyVertex), lines (vtkLine and
* vtkPolyLine), polygons (vtkTriangle, vtkQuad, vtkPolygon), and triangle
* strips (vtkTriangleStrip).
*
* @warning
* Some filters when processing vtkPolyData with mixed cell types may process
* the cells in differing ways. Some will convert one type into another
* (e.g., vtkTriangleStrip into vtkTriangles) or expect a certain type
* (vtkDecimatePro expects triangles or triangle strips; vtkTubeFilter
* expects lines). Read the documentation for each filter carefully to
* understand how each part of vtkPolyData is processed.
*/
#ifndef vtkPolyData_h
#define vtkPolyData_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkPointSet.h"
#include "vtkCellTypes.h" // Needed for inline methods
#include "vtkCellLinks.h" // Needed for inline methods
#include "vtkCellArray.h" // Needed for inline methods
class vtkVertex;
class vtkPolyVertex;
class vtkLine;
class vtkPolyLine;
class vtkTriangle;
class vtkQuad;
class vtkPolygon;
class vtkTriangleStrip;
class vtkEmptyCell;
struct vtkPolyDataDummyContainter;
class VTKCOMMONDATAMODEL_EXPORT vtkPolyData : public vtkPointSet
{
public:
static vtkPolyData *New();
vtkTypeMacro(vtkPolyData,vtkPointSet);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
/**
* Return what type of dataset this is.
*/
int GetDataObjectType() VTK_OVERRIDE {return VTK_POLY_DATA;}
/**
* Copy the geometric and topological structure of an input poly data object.
*/
void CopyStructure(vtkDataSet *ds) VTK_OVERRIDE;
//@{
/**
* Standard vtkDataSet interface.
*/
vtkIdType GetNumberOfCells() VTK_OVERRIDE;
vtkCell *GetCell(vtkIdType cellId) VTK_OVERRIDE;
void GetCell(vtkIdType cellId, vtkGenericCell *cell) VTK_OVERRIDE;
int GetCellType(vtkIdType cellId) VTK_OVERRIDE;
void GetCellBounds(vtkIdType cellId, double bounds[6]) VTK_OVERRIDE;
void GetCellNeighbors(vtkIdType cellId, vtkIdList *ptIds,
vtkIdList *cellIds) VTK_OVERRIDE;
//@}
/**
* Copy cells listed in idList from pd, including points, point data,
* and cell data. This method assumes that point and cell data have
* been allocated. If you pass in a point locator, then the points
* won't be duplicated in the output.
*/
void CopyCells(vtkPolyData *pd, vtkIdList *idList,
vtkPointLocator *locator = NULL);
/**
* Copy a cells point ids into list provided. (Less efficient.)
*/
void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) VTK_OVERRIDE;
/**
* Efficient method to obtain cells using a particular point. Make sure that
* routine BuildLinks() has been called.
*/
void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) VTK_OVERRIDE;
/**
* Compute the (X, Y, Z) bounds of the data.
*/
void ComputeBounds() VTK_OVERRIDE;
/**
* Recover extra allocated memory when creating data whose initial size
* is unknown. Examples include using the InsertNextCell() method, or
* when using the CellArray::EstimateSize() method to create vertices,
* lines, polygons, or triangle strips.
*/
void Squeeze() VTK_OVERRIDE;
/**
* Return the maximum cell size in this poly data.
*/
int GetMaxCellSize() VTK_OVERRIDE;
/**
* Set the cell array defining vertices.
*/
void SetVerts (vtkCellArray* v);
/**
* Get the cell array defining vertices. If there are no vertices, an
* empty array will be returned (convenience to simplify traversal).
*/
vtkCellArray *GetVerts();
/**
* Set the cell array defining lines.
*/
void SetLines (vtkCellArray* l);
/**
* Get the cell array defining lines. If there are no lines, an
* empty array will be returned (convenience to simplify traversal).
*/
vtkCellArray *GetLines();
/**
* Set the cell array defining polygons.
*/
void SetPolys (vtkCellArray* p);
/**
* Get the cell array defining polygons. If there are no polygons, an
* empty array will be returned (convenience to simplify traversal).
*/
vtkCellArray *GetPolys();
/**
* Set the cell array defining triangle strips.
*/
void SetStrips (vtkCellArray* s);
/**
* Get the cell array defining triangle strips. If there are no
* triangle strips, an empty array will be returned (convenience to
* simplify traversal).
*/
vtkCellArray *GetStrips();
//@{
/**
* Return the number of primitives of a particular type held..
*/
vtkIdType GetNumberOfVerts();
vtkIdType GetNumberOfLines();
vtkIdType GetNumberOfPolys();
vtkIdType GetNumberOfStrips();
//@}
/**
* Method allocates initial storage for vertex, line, polygon, and
* triangle strip arrays. Use this method before the method
* PolyData::InsertNextCell(). (Or, provide vertex, line, polygon, and
* triangle strip cell arrays.) The array capacity is doubled when the
* inserting a cell exceeds the current capacity. extSize is no longer used.
*/
void Allocate(vtkIdType numCells=1000, int extSize=1000);
/**
* Similar to the method above, this method allocates initial storage for
* vertex, line, polygon, and triangle strip arrays. It does this more
* intelligently, examining the supplied inPolyData to determine whether to
* allocate the verts, lines, polys, and strips arrays. (These arrays are
* allocated only if there is data in the corresponding arrays in the
* inPolyData.) Caution: if the inPolyData has no verts, and after
* allocating with this method an PolyData::InsertNextCell() is invoked
* where a vertex is inserted, bad things will happen.
*/
void Allocate(vtkPolyData *inPolyData, vtkIdType numCells=1000,
int extSize=1000);
/**
* Insert a cell of type VTK_VERTEX, VTK_POLY_VERTEX, VTK_LINE, VTK_POLY_LINE,
* VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON, or VTK_TRIANGLE_STRIP. Make sure that
* the PolyData::Allocate() function has been called first or that vertex,
* line, polygon, and triangle strip arrays have been supplied.
* Note: will also insert VTK_PIXEL, but converts it to VTK_QUAD.
*/
vtkIdType InsertNextCell(int type, int npts, vtkIdType *pts);
/**
* Insert a cell of type VTK_VERTEX, VTK_POLY_VERTEX, VTK_LINE, VTK_POLY_LINE,
* VTK_TRIANGLE, VTK_QUAD, VTK_POLYGON, or VTK_TRIANGLE_STRIP. Make sure that
* the PolyData::Allocate() function has been called first or that vertex,
* line, polygon, and triangle strip arrays have been supplied.
* Note: will also insert VTK_PIXEL, but converts it to VTK_QUAD.
*/
vtkIdType InsertNextCell(int type, vtkIdList *pts);
/**
* Begin inserting data all over again. Memory is not freed but otherwise
* objects are returned to their initial state.
*/
void Reset();
/**
* Create data structure that allows random access of cells. BuildCells is
* expensive but necessary to make use of the faster non-virtual implementations
* of GetCell/GetCellPoints. One may check if cells need to be built via
* NeedToBuilds before invoking. Cells always need to be built/re-built after
* low level direct modifications to verts, lines, polys or strips cell arrays.
*/
void BuildCells();
/**
* Check if BuildCells is needed.
*/
bool NeedToBuildCells() { return this->Cells == 0; }
/**
* Create upward links from points to cells that use each point. Enables
* topologically complex queries. Normally the links array is allocated
* based on the number of points in the vtkPolyData. The optional
* initialSize parameter can be used to allocate a larger size initially.
*/
void BuildLinks(int initialSize=0);
/**
* Release data structure that allows random access of the cells. This must
* be done before a 2nd call to BuildLinks(). DeleteCells implicitly deletes
* the links as well since they are no longer valid.
*/
void DeleteCells();
/**
* Release the upward links from point to cells that use each point.
*/
void DeleteLinks();
/**
* Special (efficient) operations on poly data. Use carefully.
*/
void GetPointCells(vtkIdType ptId, unsigned short& ncells,
vtkIdType* &cells);
/**
* Get the neighbors at an edge. More efficient than the general
* GetCellNeighbors(). Assumes links have been built (with BuildLinks()),
* and looks specifically for edge neighbors.
*/
void GetCellEdgeNeighbors(vtkIdType cellId, vtkIdType p1, vtkIdType p2,
vtkIdList *cellIds);
/**
* Get a pointer to a list of point ids defining cell. More efficient
* because pointer points directly to cell array internals and this
* is not a virtual call. However, this requires that cells have been
* built (with BuildCells()). The cell type is returned.
*/
unsigned char GetCellPoints(vtkIdType cellId,
vtkIdType& npts, vtkIdType* &pts);
/**
* Get a pointer to the cell, ie [npts pid1 .. pidn]. More efficient
* because pointer points directly to cell array internals and this
* is not a virtual call. However, this requires that cells have been
* built (with BuildCells()). The cell type is returned.
*/
unsigned char GetCell(vtkIdType cellId, vtkIdType* &pts);
/**
* Given three vertices, determine whether it's a triangle. Make sure
* BuildLinks() has been called first.
*/
int IsTriangle(int v1, int v2, int v3);
/**
* Determine whether two points form an edge. If they do, return non-zero.
* By definition PolyVertex and PolyLine have no edges since 1-dimensional
* edges are only found on cells 2D and higher.
* Edges are defined as 1-D boundary entities to cells.
* Make sure BuildLinks() has been called first.
*/
int IsEdge(vtkIdType p1, vtkIdType p2);
/**
* Determine whether a point is used by a particular cell. If it is, return
* non-zero. Make sure BuildCells() has been called first.
*/
int IsPointUsedByCell(vtkIdType ptId, vtkIdType cellId);
/**
* Replace the points defining cell "cellId" with a new set of points. This
* operator is (typically) used when links from points to cells have not been
* built (i.e., BuildLinks() has not been executed). Use the operator
* ReplaceLinkedCell() to replace a cell when cell structure has been built.
*/
void ReplaceCell(vtkIdType cellId, int npts, vtkIdType *pts);
/**
* Replace a point in the cell connectivity list with a different point.
*/
void ReplaceCellPoint(vtkIdType cellId, vtkIdType oldPtId,
vtkIdType newPtId);
/**
* Reverse the order of point ids defining the cell.
*/
void ReverseCell(vtkIdType cellId);
//@{
/**
* Mark a point/cell as deleted from this vtkPolyData.
*/
void DeletePoint(vtkIdType ptId);
void DeleteCell(vtkIdType cellId);
//@}
/**
* The cells marked by calls to DeleteCell are stored in the Cell Array
* VTK_EMPTY_CELL, but they still exist in the cell arrays.
* Calling RemoveDeletedCells will traverse the cell arrays and remove/compact
* the cell arrays as well as any cell data thus truly removing the cells
* from the polydata object.
*/
void RemoveDeletedCells();
//@{
/**
* Add a point to the cell data structure (after cell pointers have been
* built). This method adds the point and then allocates memory for the
* links to the cells. (To use this method, make sure points are available
* and BuildLinks() has been invoked.) Of the two methods below, one inserts
* a point coordinate and the other just makes room for cell links.
*/
vtkIdType InsertNextLinkedPoint(int numLinks);
vtkIdType InsertNextLinkedPoint(double x[3], int numLinks);
//@}
/**
* Add a new cell to the cell data structure (after cell pointers have been
* built). This method adds the cell and then updates the links from the
* points to the cells. (Memory is allocated as necessary.)
*/
vtkIdType InsertNextLinkedCell(int type, int npts, vtkIdType *pts);
/**
* Replace one cell with another in cell structure. This operator updates the
* connectivity list and the point's link list. It does not delete references
* to the old cell in the point's link list. Use the operator
* RemoveCellReference() to delete all references from points to (old) cell.
* You may also want to consider using the operator ResizeCellList() if the
* link list is changing size.
*/
void ReplaceLinkedCell(vtkIdType cellId, int npts, vtkIdType *pts);
/**
* Remove all references to cell in cell structure. This means the links from
* the cell's points to the cell are deleted. Memory is not reclaimed. Use the
* method ResizeCellList() to resize the link list from a point to its using
* cells. (This operator assumes BuildLinks() has been called.)
*/
void RemoveCellReference(vtkIdType cellId);
/**
* Add references to cell in cell structure. This means the links from
* the cell's points to the cell are modified. Memory is not extended. Use the
* method ResizeCellList() to resize the link list from a point to its using
* cells. (This operator assumes BuildLinks() has been called.)
*/
void AddCellReference(vtkIdType cellId);
/**
* Remove a reference to a cell in a particular point's link list. You may
* also consider using RemoveCellReference() to remove the references from
* all the cell's points to the cell. This operator does not reallocate
* memory; use the operator ResizeCellList() to do this if necessary.
*/
void RemoveReferenceToCell(vtkIdType ptId, vtkIdType cellId);
/**
* Add a reference to a cell in a particular point's link list. (You may also
* consider using AddCellReference() to add the references from all the
* cell's points to the cell.) This operator does not realloc memory; use the
* operator ResizeCellList() to do this if necessary.
*/
void AddReferenceToCell(vtkIdType ptId, vtkIdType cellId);
/**
* Resize the list of cells using a particular point. (This operator assumes
* that BuildLinks() has been called.)
*/
void ResizeCellList(vtkIdType ptId, int size);
/**
* Restore object to initial state. Release memory back to system.
*/
void Initialize() VTK_OVERRIDE;
//@{
/**
* Get the piece and the number of pieces. Similar to extent in 3D.
*/
virtual int GetPiece();
virtual int GetNumberOfPieces();
//@}
/**
* Get the ghost level.
*/
virtual int GetGhostLevel();
/**
* Return the actual size of the data in kibibytes (1024 bytes). This number
* is valid only after the pipeline has updated. The memory size
* returned is guaranteed to be greater than or equal to the
* memory required to represent the data (e.g., extra space in
* arrays, etc. are not included in the return value). THIS METHOD
* IS THREAD SAFE.
*/
unsigned long GetActualMemorySize() VTK_OVERRIDE;
//@{
/**
* Shallow and Deep copy.
*/
void ShallowCopy(vtkDataObject *src) VTK_OVERRIDE;
void DeepCopy(vtkDataObject *src) VTK_OVERRIDE;
//@}
/**
* This method will remove any cell that is marked as ghost
* (has the vtkDataSetAttributes::DUPLICATECELL bit set).
* It does not remove unused points.
*/
void RemoveGhostCells();
//@{
/**
* Retrieve an instance of this class from an information object.
*/
static vtkPolyData* GetData(vtkInformation* info);
static vtkPolyData* GetData(vtkInformationVector* v, int i=0);
//@}
/**
* Scalar field critical point classification (for manifold 2D meshes).
* Reference: J. Milnor "Morse Theory", Princeton University Press, 1963.
* Given a pointId and an attribute representing a scalar field, this member
* returns the index of the critical point:
* vtkPolyData::MINIMUM (index 0): local minimum;
* vtkPolyData::SADDLE (index 1): local saddle;
* vtkPolyData::MAXIMUM (index 2): local maximum.
* Other returned values are:
* vtkPolyData::REGULAR_POINT: regular point (the gradient does not vanish);
* vtkPolyData::ERR_NON_MANIFOLD_STAR: the star of the considered vertex is
* not manifold (could not evaluate the index)
* vtkPolyData::ERR_INCORRECT_FIELD: the number of entries in the scalar field
* array is different form the number of vertices in the mesh.
* vtkPolyData::ERR_NO_SUCH_FIELD: the specified scalar field does not exist.
*/
enum
{
ERR_NO_SUCH_FIELD = -4,
ERR_INCORRECT_FIELD = -3,
ERR_NON_MANIFOLD_STAR = -2,
REGULAR_POINT = -1,
MINIMUM = 0,
SADDLE = 1,
MAXIMUM = 2
};
int GetScalarFieldCriticalIndex (vtkIdType pointId,
vtkDataArray *scalarField);
int GetScalarFieldCriticalIndex (vtkIdType pointId, int fieldId);
int GetScalarFieldCriticalIndex (vtkIdType pointId, const char* fieldName);
protected:
vtkPolyData();
~vtkPolyData() VTK_OVERRIDE;
// constant cell objects returned by GetCell called.
vtkVertex *Vertex;
vtkPolyVertex *PolyVertex;
vtkLine *Line;
vtkPolyLine *PolyLine;
vtkTriangle *Triangle;
vtkQuad *Quad;
vtkPolygon *Polygon;
vtkTriangleStrip *TriangleStrip;
vtkEmptyCell *EmptyCell;
// points inherited
// point data (i.e., scalars, vectors, normals, tcoords) inherited
vtkCellArray *Verts;
vtkCellArray *Lines;
vtkCellArray *Polys;
vtkCellArray *Strips;
// dummy static member below used as a trick to simplify traversal
static vtkPolyDataDummyContainter DummyContainer;
// supporting structures for more complex topological operations
// built only when necessary
vtkCellTypes *Cells;
vtkCellLinks *Links;
private:
// Hide these from the user and the compiler.
/**
* For legacy compatibility. Do not use.
*/
void GetCellNeighbors(vtkIdType cellId, vtkIdList& ptIds, vtkIdList& cellIds)
{this->GetCellNeighbors(cellId, &ptIds, &cellIds);}
void Cleanup();
private:
vtkPolyData(const vtkPolyData&) VTK_DELETE_FUNCTION;
void operator=(const vtkPolyData&) VTK_DELETE_FUNCTION;
};
inline void vtkPolyData::GetPointCells(vtkIdType ptId, unsigned short& ncells,
vtkIdType* &cells)
{
ncells = this->Links->GetNcells(ptId);
cells = this->Links->GetCells(ptId);
}
inline int vtkPolyData::IsTriangle(int v1, int v2, int v3)
{
unsigned short int n1;
int i, j, tVerts[3];
vtkIdType *cells, *tVerts2, n2;
tVerts[0] = v1;
tVerts[1] = v2;
tVerts[2] = v3;
for (i=0; i<3; i++)
{
this->GetPointCells(tVerts[i], n1, cells);
for (j=0; j<n1; j++)
{
this->GetCellPoints(cells[j], n2, tVerts2);
if ( (tVerts[0] == tVerts2[0] || tVerts[0] == tVerts2[1] ||
tVerts[0] == tVerts2[2]) &&
(tVerts[1] == tVerts2[0] || tVerts[1] == tVerts2[1] ||
tVerts[1] == tVerts2[2]) &&
(tVerts[2] == tVerts2[0] || tVerts[2] == tVerts2[1] ||
tVerts[2] == tVerts2[2]) )
{
return 1;
}
}
}
return 0;
}
inline int vtkPolyData::IsPointUsedByCell(vtkIdType ptId, vtkIdType cellId)
{
vtkIdType *pts, npts;
this->GetCellPoints(cellId, npts, pts);
for (vtkIdType i=0; i < npts; i++)
{
if ( pts[i] == ptId )
{
return 1;
}
}
return 0;
}
inline void vtkPolyData::DeletePoint(vtkIdType ptId)
{
this->Links->DeletePoint(ptId);
}
inline void vtkPolyData::DeleteCell(vtkIdType cellId)
{
this->Cells->DeleteCell(cellId);
}
inline void vtkPolyData::RemoveCellReference(vtkIdType cellId)
{
vtkIdType *pts, npts;
this->GetCellPoints(cellId, npts, pts);
for (vtkIdType i=0; i<npts; i++)
{
this->Links->RemoveCellReference(cellId, pts[i]);
}
}
inline void vtkPolyData::AddCellReference(vtkIdType cellId)
{
vtkIdType *pts, npts;
this->GetCellPoints(cellId, npts, pts);
for (vtkIdType i=0; i<npts; i++)
{
this->Links->AddCellReference(cellId, pts[i]);
}
}
inline void vtkPolyData::ResizeCellList(vtkIdType ptId, int size)
{
this->Links->ResizeCellList(ptId,size);
}
inline void vtkPolyData::ReplaceCellPoint(vtkIdType cellId, vtkIdType oldPtId,
vtkIdType newPtId)
{
int i;
vtkIdType *verts, nverts;
this->GetCellPoints(cellId,nverts,verts);
for ( i=0; i < nverts; i++ )
{
if ( verts[i] == oldPtId )
{
verts[i] = newPtId; // this is very nasty! direct write!
return;
}
}
}
inline unsigned char vtkPolyData::GetCellPoints(
vtkIdType cellId, vtkIdType& npts, vtkIdType* &pts)
{
unsigned char type = this->Cells->GetCellType(cellId);
vtkCellArray *cells;
switch (type)
{
case VTK_VERTEX: case VTK_POLY_VERTEX:
cells = this->Verts;
break;
case VTK_LINE: case VTK_POLY_LINE:
cells = this->Lines;
break;
case VTK_TRIANGLE: case VTK_QUAD: case VTK_POLYGON:
cells = this->Polys;
break;
case VTK_TRIANGLE_STRIP:
cells = this->Strips;
break;
default:
cells = NULL;
npts = 0;
pts = NULL;
return 0;
}
int loc = this->Cells->GetCellLocation(cellId);
cells->GetCell(loc, npts, pts);
return type;
}
inline unsigned char vtkPolyData::GetCell(
vtkIdType cellId, vtkIdType* &cell)
{
unsigned char type = this->Cells->GetCellType(cellId);
vtkCellArray *cells;
switch (type)
{
case VTK_VERTEX: case VTK_POLY_VERTEX:
cells = this->Verts;
break;
case VTK_LINE: case VTK_POLY_LINE:
cells = this->Lines;
break;
case VTK_TRIANGLE: case VTK_QUAD: case VTK_POLYGON:
cells = this->Polys;
break;
case VTK_TRIANGLE_STRIP:
cells = this->Strips;
break;
default:
cells = NULL;
cell = NULL;
return 0;
}
int loc = this->Cells->GetCellLocation(cellId);
cell = cells->GetData()->GetPointer(loc);
return type;
}
#endif
|