/usr/include/vtk-7.1/vtkLine.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkLine.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkLine
* @brief cell represents a 1D line
*
* vtkLine is a concrete implementation of vtkCell to represent a 1D line.
*/
#ifndef vtkLine_h
#define vtkLine_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkCell.h"
class vtkIncrementalPointLocator;
class VTKCOMMONDATAMODEL_EXPORT vtkLine : public vtkCell
{
public:
static vtkLine *New();
vtkTypeMacro(vtkLine,vtkCell);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() VTK_OVERRIDE {return VTK_LINE;};
int GetCellDimension() VTK_OVERRIDE {return 1;};
int GetNumberOfEdges() VTK_OVERRIDE {return 0;};
int GetNumberOfFaces() VTK_OVERRIDE {return 0;};
vtkCell *GetEdge(int) VTK_OVERRIDE {return 0;};
vtkCell *GetFace(int) VTK_OVERRIDE {return 0;};
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) VTK_OVERRIDE;
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) VTK_OVERRIDE;
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights) VTK_OVERRIDE;
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights) VTK_OVERRIDE;
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) VTK_OVERRIDE;
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs) VTK_OVERRIDE;
double *GetParametricCoords() VTK_OVERRIDE;
//@}
/**
* Clip this line using scalar value provided. Like contouring, except
* that it cuts the line to produce other lines.
*/
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *lines,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut) VTK_OVERRIDE;
/**
* Return the center of the triangle in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) VTK_OVERRIDE;
/**
* Line-line intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId) VTK_OVERRIDE;
/**
* Performs intersection of the projection of two finite 3D lines onto a 2D
* plane. An intersection is found if the projection of the two lines onto
* the plane perpendicular to the cross product of the two lines intersect.
* The parameters (u,v) are the parametric coordinates of the lines at the
* position of closest approach.
*/
static int Intersection(double p1[3], double p2[3],
double x1[3], double x2[3],
double& u, double& v);
/**
* Performs intersection of two finite 3D lines. An intersection is found if
* the projection of the two lines onto the plane perpendicular to the cross
* product of the two lines intersect, and if the distance between the
* closest points of approach are within a relative tolerance. The parameters
* (u,v) are the parametric coordinates of the lines at the position of
* closest approach.
* NOTE: "Unlike Intersection(), which determines whether the projections of
* two lines onto a plane intersect, Intersection3D() determines whether the
* lines themselves in 3D space intersect, within a tolerance.
*/
static int Intersection3D(double p1[3], double p2[3],
double x1[3], double x2[3],
double& u, double& v);
/**
* Compute the distance of a point x to a finite line (p1,p2). The method
* computes the parametric coordinate t and the point location on the
* line. Note that t is unconstrained (i.e., it may lie outside the range
* [0,1]) but the closest point will lie within the finite line [p1,p2], if
* it is defined. Also, the method returns the distance squared between x and
* the line (p1,p2).
*/
static double DistanceToLine(double x[3], double p1[3], double p2[3],
double &t, double* closestPoint=NULL);
/**
* Determine the distance of the current vertex to the edge defined by
* the vertices provided. Returns distance squared. Note: line is assumed
* infinite in extent.
*/
static double DistanceToLine(double x[3], double p1[3], double p2[3]);
/**
* Computes the shortest distance squared between two infinite lines, each
* defined by a pair of points (l0,l1) and (m0,m1).
* Upon return, the closest points on the two line segments will be stored
* in closestPt1 and closestPt2. Their parametric coords
* (-inf <= t0, t1 <= inf) will be stored in t0 and t1. The return value is
* the shortest distance squared between the two line-segments.
*/
static double DistanceBetweenLines(
double l0[3], double l1[3],
double m0[3], double m1[3],
double closestPt1[3], double closestPt2[3],
double &t1, double &t2 );
/**
* Computes the shortest distance squared between two finite line segments
* defined by their end points (l0,l1) and (m0,m1).
* Upon return, the closest points on the two line segments will be stored
* in closestPt1 and closestPt2. Their parametric coords (0 <= t0, t1 <= 1)
* will be stored in t0 and t1. The return value is the shortest distance
* squared between the two line-segments.
*/
static double DistanceBetweenLineSegments(
double l0[3], double l1[3],
double m0[3], double m1[3],
double closestPt1[3], double closestPt2[3],
double &t1, double &t2 );
/**
* @deprecated Replaced by vtkLine::InterpolateFunctions as of VTK 5.2
*/
static void InterpolationFunctions(double pcoords[3], double weights[2]);
/**
* @deprecated Replaced by vtkLine::InterpolateDerivs as of VTK 5.2
*/
static void InterpolationDerivs(double pcoords[3], double derivs[2]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(double pcoords[3], double weights[2]) VTK_OVERRIDE
{
vtkLine::InterpolationFunctions(pcoords,weights);
}
void InterpolateDerivs(double pcoords[3], double derivs[2]) VTK_OVERRIDE
{
vtkLine::InterpolationDerivs(pcoords,derivs);
}
//@}
protected:
vtkLine();
~vtkLine() VTK_OVERRIDE {}
private:
vtkLine(const vtkLine&) VTK_DELETE_FUNCTION;
void operator=(const vtkLine&) VTK_DELETE_FUNCTION;
};
//----------------------------------------------------------------------------
inline int vtkLine::GetParametricCenter(double pcoords[3])
{
pcoords[0] = 0.5;
pcoords[1] = pcoords[2] = 0.0;
return 0;
}
#endif
|