This file is indexed.

/usr/include/vtk-7.1/vtkImplicitModeller.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImplicitModeller.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkImplicitModeller
 * @brief   compute distance from input geometry on structured point dataset
 *
 * vtkImplicitModeller is a filter that computes the distance from the input
 * geometry to the points of an output structured point set. This distance
 * function can then be "contoured" to generate new, offset surfaces from
 * the original geometry. An important feature of this object is
 * "capping". If capping is turned on, after the implicit model is created,
 * the values on the boundary of the structured points dataset are set to
 * the cap value. This is used to force closure of the resulting contoured
 * surface. Note, however, that large cap values can generate weird surface
 * normals in those cells adjacent to the boundary of the dataset. Using
 * smaller cap value will reduce this effect.
 * <P>
 * Another important ivar is MaximumDistance. This controls how far into the
 * volume the distance function is computed from the input geometry.  Small
 * values give significant increases in performance. However, there can
 * strange sampling effects at the extreme range of the MaximumDistance.
 * <P>
 * In order to properly execute and sample the input data, a rectangular
 * region in space must be defined (this is the ivar ModelBounds).  If not
 * explicitly defined, the model bounds will be computed. Note that to avoid
 * boundary effects, it is possible to adjust the model bounds (i.e., using
 * the AdjustBounds and AdjustDistance ivars) to strictly contain the
 * sampled data.
 * <P>
 * This filter has one other unusual capability: it is possible to append
 * data in a sequence of operations to generate a single output. This is
 * useful when you have multiple datasets and want to create a
 * conglomeration of all the data.  However, the user must be careful to
 * either specify the ModelBounds or specify the first item such that its
 * bounds completely contain all other items.  This is because the
 * rectangular region of the output can not be changed after the 1st Append.
 * <P>
 * The ProcessMode ivar controls the method used within the Append function
 * (where the actual work is done regardless if the Append function is
 * explicitly called) to compute the implicit model.  If set to work in voxel
 * mode, each voxel is visited once.  If set to cell mode, each cell is visited
 * once.  Tests have shown once per voxel to be faster when there are a
 * lot of cells (at least a thousand?); relative performance improvement
 * increases with addition cells. Primitives should not be stripped for best
 * performance of the voxel mode.  Also, if explicitly using the Append feature
 * many times, the cell mode will probably be better because each voxel will be
 * visited each Append.  Append the data before input if possible when using
 * the voxel mode.  Do not switch between voxel and cell mode between execution
 * of StartAppend and EndAppend.
 * <P>
 * Further performance improvement is now possible using the PerVoxel process
 * mode on multi-processor machines (the mode is now multithreaded).  Each
 * thread processes a different "slab" of the output.  Also, if the input is
 * vtkPolyData, it is appropriately clipped for each thread; that is, each
 * thread only considers the input which could affect its slab of the output.
 * <P>
 * This filter can now produce output of any type supported by vtkImageData.
 * However to support this change, additional sqrts must be executed during the
 * Append step.  Previously, the output was initialized to the squared CapValue
 * in StartAppend, the output was updated with squared distance values during
 * the Append, and then the sqrt of the distances was computed in EndAppend.
 * To support different scalar types in the output (largely to reduce memory
 * requirements as an vtkImageShiftScale and/or vtkImageCast could have
 * achieved the same result), we can't "afford" to save squared value in the
 * output, because then we could only represent up to the sqrt of the scalar
 * max for an integer type in the output; 1 (instead of 255) for an unsigned
 * char; 11 for a char (instead of 127).  Thus this change may result in a
 * minor performance degradation.  Non-float output types can be scaled to the
 * CapValue by turning ScaleToMaximumDistance On.
 *
 * @sa
 * vtkSampleFunction vtkContourFilter
*/

#ifndef vtkImplicitModeller_h
#define vtkImplicitModeller_h

#include "vtkFiltersHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"

#define VTK_VOXEL_MODE   0
#define VTK_CELL_MODE    1

class vtkDataArray;
class vtkExtractGeometry;
class vtkMultiThreader;

class VTKFILTERSHYBRID_EXPORT vtkImplicitModeller : public vtkImageAlgorithm
{
public:
  vtkTypeMacro(vtkImplicitModeller,vtkImageAlgorithm);
  void PrintSelf(ostream& os, vtkIndent indent);

  /**
   * Construct with sample dimensions=(50,50,50), and so that model bounds are
   * automatically computed from the input. Capping is turned on with CapValue
   * equal to a large positive number.
   */
  static vtkImplicitModeller *New();

  /**
   * Compute ModelBounds from input geometry. If input is not specified, the
   * input of the filter will be used.
   */
  double ComputeModelBounds(vtkDataSet *input = NULL);

  //@{
  /**
   * Set/Get the i-j-k dimensions on which to sample distance function.
   */
  vtkGetVectorMacro(SampleDimensions,int,3);
  void SetSampleDimensions(int i, int j, int k);
  void SetSampleDimensions(int dim[3]);
  //@}

  //@{
  /**
   * Set / get the distance away from surface of input geometry to
   * sample. This value is specified as a percentage of the length of
   * the diagonal of the input data bounding box.
   * Smaller values make large increases in performance.
   */
  vtkSetClampMacro(MaximumDistance,double,0.0,1.0);
  vtkGetMacro(MaximumDistance,double);
  //@}

  //@{
  /**
   * Set / get the region in space in which to perform the sampling. If
   * not specified, it will be computed automatically.
   */
  vtkSetVector6Macro(ModelBounds,double);
  vtkGetVectorMacro(ModelBounds,double,6);
  //@}

  //@{
  /**
   * Control how the model bounds are computed. If the ivar AdjustBounds
   * is set, then the bounds specified (or computed automatically) is modified
   * by the fraction given by AdjustDistance. This means that the model
   * bounds is expanded in each of the x-y-z directions.
   */
  vtkSetMacro(AdjustBounds,int);
  vtkGetMacro(AdjustBounds,int);
  vtkBooleanMacro(AdjustBounds,int);
  //@}

  //@{
  /**
   * Specify the amount to grow the model bounds (if the ivar AdjustBounds
   * is set). The value is a fraction of the maximum length of the sides
   * of the box specified by the model bounds.
   */
  vtkSetClampMacro(AdjustDistance,double,-1.0,1.0);
  vtkGetMacro(AdjustDistance,double);
  //@}

  //@{
  /**
   * The outer boundary of the structured point set can be assigned a
   * particular value. This can be used to close or "cap" all surfaces.
   */
  vtkSetMacro(Capping,int);
  vtkGetMacro(Capping,int);
  vtkBooleanMacro(Capping,int);
  //@}

  //@{
  /**
   * Specify the capping value to use. The CapValue is also used as an
   * initial distance value at each point in the dataset.
   */
  void SetCapValue(double value);
  vtkGetMacro(CapValue,double);
  //@}

  //@{
  /**
   * If a non-floating output type is specified, the output distances can be
   * scaled to use the entire positive scalar range of the output type
   * specified (up to the CapValue which is equal to the max for the type
   * unless modified by the user).  For example, if ScaleToMaximumDistance
   * is On and the OutputScalarType is UnsignedChar the distances saved in the
   * output would be linearly scaled between 0 (for distances "very close" to
   * the surface) and 255 (at the specifed maximum distance)... assuming the
   * CapValue is not changed from 255.
   */
  vtkSetMacro(ScaleToMaximumDistance, int);
  vtkGetMacro(ScaleToMaximumDistance, int);
  vtkBooleanMacro(ScaleToMaximumDistance,int);
  //@}

  //@{
  /**
   * Specify whether to visit each cell once per append or each voxel once
   * per append.  Some tests have shown once per voxel to be faster
   * when there are a lot of cells (at least a thousand?); relative
   * performance improvement increases with addition cells.  Primitives
   * should not be stripped for best performance of the voxel mode.
   */
  vtkSetClampMacro(ProcessMode, int, 0, 1);
  vtkGetMacro(ProcessMode, int);
  void SetProcessModeToPerVoxel() {this->SetProcessMode(VTK_VOXEL_MODE);}
  void SetProcessModeToPerCell()  {this->SetProcessMode(VTK_CELL_MODE);}
  const char *GetProcessModeAsString(void);
  //@}

  //@{
  /**
   * Specify the level of the locator to use when using the per voxel
   * process mode.
   */
  vtkSetMacro(LocatorMaxLevel,int);
  vtkGetMacro(LocatorMaxLevel,int);
  //@}

  //@{
  /**
   * Set / Get the number of threads used during Per-Voxel processing mode
   */
  vtkSetClampMacro( NumberOfThreads, int, 1, VTK_MAX_THREADS );
  vtkGetMacro( NumberOfThreads, int );
  //@}

  //@{
  /**
   * Set the desired output scalar type.
   */
  void SetOutputScalarType(int type);
  vtkGetMacro(OutputScalarType,int);
  void SetOutputScalarTypeToFloat(){this->SetOutputScalarType(VTK_FLOAT);};
  void SetOutputScalarTypeToDouble(){this->SetOutputScalarType(VTK_DOUBLE);};
  void SetOutputScalarTypeToInt(){this->SetOutputScalarType(VTK_INT);};
  void SetOutputScalarTypeToUnsignedInt()
    {this->SetOutputScalarType(VTK_UNSIGNED_INT);};
  void SetOutputScalarTypeToLong(){this->SetOutputScalarType(VTK_LONG);};
  void SetOutputScalarTypeToUnsignedLong()
    {this->SetOutputScalarType(VTK_UNSIGNED_LONG);};
  void SetOutputScalarTypeToShort(){this->SetOutputScalarType(VTK_SHORT);};
  void SetOutputScalarTypeToUnsignedShort()
    {this->SetOutputScalarType(VTK_UNSIGNED_SHORT);};
  void SetOutputScalarTypeToUnsignedChar()
    {this->SetOutputScalarType(VTK_UNSIGNED_CHAR);};
  void SetOutputScalarTypeToChar()
    {this->SetOutputScalarType(VTK_CHAR);};
  //@}

  /**
   * Initialize the filter for appending data. You must invoke the
   * StartAppend() method before doing successive Appends(). It's also a
   * good idea to manually specify the model bounds; otherwise the input
   * bounds for the data will be used.
   */
  void StartAppend();

  /**
   * Append a data set to the existing output. To use this function,
   * you'll have to invoke the StartAppend() method before doing
   * successive appends. It's also a good idea to specify the model
   * bounds; otherwise the input model bounds is used. When you've
   * finished appending, use the EndAppend() method.
   */
  void Append(vtkDataSet *input);

  /**
   * Method completes the append process.
   */
  void EndAppend();

  // See the vtkAlgorithm for a desciption of what these do
  int ProcessRequest(vtkInformation*,
                     vtkInformationVector**,
                     vtkInformationVector*);

protected:
  vtkImplicitModeller();
  ~vtkImplicitModeller();

  double GetScalarTypeMax(int type);

  virtual int RequestInformation (vtkInformation *,
                                  vtkInformationVector **,
                                  vtkInformationVector *);
  virtual int RequestData (vtkInformation *,
                           vtkInformationVector **, vtkInformationVector *);

  void StartAppend(int internal);
  void Cap(vtkDataArray *s);

  vtkMultiThreader *Threader;
  int              NumberOfThreads;

  int SampleDimensions[3];
  double MaximumDistance;
  double ModelBounds[6];
  int Capping;
  double CapValue;
  int DataAppended;
  int AdjustBounds;
  double AdjustDistance;
  int ProcessMode;
  int LocatorMaxLevel;
  int OutputScalarType;
  int ScaleToMaximumDistance;

  // flag to limit to one ComputeModelBounds per StartAppend
  int BoundsComputed;

  // the max distance computed during that one call
  double InternalMaxDistance;

  virtual int FillInputPortInformation(int, vtkInformation*);

private:
  vtkImplicitModeller(const vtkImplicitModeller&) VTK_DELETE_FUNCTION;
  void operator=(const vtkImplicitModeller&) VTK_DELETE_FUNCTION;
};

#endif