This file is indexed.

/usr/include/vtk-7.1/vtkImageReslice.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkImageReslice.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkImageReslice
 * @brief   Reslices a volume along a new set of axes.
 *
 * vtkImageReslice is the swiss-army-knife of image geometry filters:
 * It can permute, rotate, flip, scale, resample, deform, and pad image
 * data in any combination with reasonably high efficiency.  Simple
 * operations such as permutation, resampling and padding are done
 * with similar efficiently to the specialized vtkImagePermute,
 * vtkImageResample, and vtkImagePad filters.  There are a number of
 * tasks that vtkImageReslice is well suited for:
 * <p>1) Application of simple rotations, scales, and translations to
 * an image. It is often a good idea to use vtkImageChangeInformation
 * to center the image first, so that scales and rotations occur around
 * the center rather than around the lower-left corner of the image.
 * <p>2) Resampling of one data set to match the voxel sampling of
 * a second data set via the SetInformationInput() method, e.g. for
 * the purpose of comparing two images or combining two images.
 * A transformation, either linear or nonlinear, can be applied
 * at the same time via the SetResliceTransform method if the two
 * images are not in the same coordinate space.
 * <p>3) Extraction of slices from an image volume.  The most convenient
 * way to do this is to use SetResliceAxesDirectionCosines() to
 * specify the orientation of the slice.  The direction cosines give
 * the x, y, and z axes for the output volume.  The method
 * SetOutputDimensionality(2) is used to specify that want to output a
 * slice rather than a volume.  The SetResliceAxesOrigin() command is
 * used to provide an (x,y,z) point that the slice will pass through.
 * You can use both the ResliceAxes and the ResliceTransform at the
 * same time, in order to extract slices from a volume that you have
 * applied a transformation to.
 * @warning
 * This filter is very inefficient if the output X dimension is 1.
 * @sa
 * vtkAbstractTransform vtkMatrix4x4
*/

#ifndef vtkImageReslice_h
#define vtkImageReslice_h


#include "vtkImagingCoreModule.h" // For export macro
#include "vtkThreadedImageAlgorithm.h"

// interpolation mode constants
#define VTK_RESLICE_NEAREST VTK_NEAREST_INTERPOLATION
#define VTK_RESLICE_LINEAR VTK_LINEAR_INTERPOLATION
#define VTK_RESLICE_CUBIC VTK_CUBIC_INTERPOLATION

class vtkImageData;
class vtkAbstractTransform;
class vtkMatrix4x4;
class vtkImageStencilData;
class vtkScalarsToColors;
class vtkAbstractImageInterpolator;

class VTKIMAGINGCORE_EXPORT vtkImageReslice : public vtkThreadedImageAlgorithm
{
public:
  static vtkImageReslice *New();
  vtkTypeMacro(vtkImageReslice, vtkThreadedImageAlgorithm);

  void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;

  //@{
  /**
   * This method is used to set up the axes for the output voxels.
   * The output Spacing, Origin, and Extent specify the locations
   * of the voxels within the coordinate system defined by the axes.
   * The ResliceAxes are used most often to permute the data, e.g.
   * to extract ZY or XZ slices of a volume as 2D XY images.
   * <p>The first column of the matrix specifies the x-axis
   * vector (the fourth element must be set to zero), the second
   * column specifies the y-axis, and the third column the
   * z-axis.  The fourth column is the origin of the
   * axes (the fourth element must be set to one).
   * <p>An alternative to SetResliceAxes() is to use
   * SetResliceAxesDirectionCosines() to set the directions of the
   * axes and SetResliceAxesOrigin() to set the origin of the axes.
   */
  virtual void SetResliceAxes(vtkMatrix4x4*);
  vtkGetObjectMacro(ResliceAxes, vtkMatrix4x4);
  //@}

  //@{
  /**
   * Specify the direction cosines for the ResliceAxes (i.e. the
   * first three elements of each of the first three columns of
   * the ResliceAxes matrix).  This will modify the current
   * ResliceAxes matrix, or create a new matrix if none exists.
   */
  void SetResliceAxesDirectionCosines(double x0, double x1, double x2,
                                      double y0, double y1, double y2,
                                      double z0, double z1, double z2);
  void SetResliceAxesDirectionCosines(const double x[3],
                                      const double y[3],
                                      const double z[3]) {
    this->SetResliceAxesDirectionCosines(x[0], x[1], x[2],
                                         y[0], y[1], y[2],
                                         z[0], z[1], z[2]); };
  void SetResliceAxesDirectionCosines(const double xyz[9]) {
    this->SetResliceAxesDirectionCosines(xyz[0], xyz[1], xyz[2],
                                         xyz[3], xyz[4], xyz[5],
                                         xyz[6], xyz[7], xyz[8]); };
  void GetResliceAxesDirectionCosines(double x[3], double y[3], double z[3]);
  void GetResliceAxesDirectionCosines(double xyz[9]) {
    this->GetResliceAxesDirectionCosines(&xyz[0], &xyz[3], &xyz[6]); };
  double *GetResliceAxesDirectionCosines() {
    this->GetResliceAxesDirectionCosines(this->ResliceAxesDirectionCosines);
    return this->ResliceAxesDirectionCosines; };
  //@}

  //@{
  /**
   * Specify the origin for the ResliceAxes (i.e. the first three
   * elements of the final column of the ResliceAxes matrix).
   * This will modify the current ResliceAxes matrix, or create
   * new matrix if none exists.
   */
  void SetResliceAxesOrigin(double x, double y, double z);
  void SetResliceAxesOrigin(const double xyz[3]) {
    this->SetResliceAxesOrigin(xyz[0], xyz[1], xyz[2]); };
  void GetResliceAxesOrigin(double xyz[3]);
  double *GetResliceAxesOrigin() {
    this->GetResliceAxesOrigin(this->ResliceAxesOrigin);
    return this->ResliceAxesOrigin; };
  //@}

  //@{
  /**
   * Set a transform to be applied to the resampling grid that has
   * been defined via the ResliceAxes and the output Origin, Spacing
   * and Extent.  Note that applying a transform to the resampling
   * grid (which lies in the output coordinate system) is
   * equivalent to applying the inverse of that transform to
   * the input volume.  Nonlinear transforms such as vtkGridTransform
   * and vtkThinPlateSplineTransform can be used here.
   */
  virtual void SetResliceTransform(vtkAbstractTransform*);
  vtkGetObjectMacro(ResliceTransform, vtkAbstractTransform);
  //@}

  //@{
  /**
   * Set a vtkImageData from which the default Spacing, Origin,
   * and WholeExtent of the output will be copied.  The spacing,
   * origin, and extent will be permuted according to the
   * ResliceAxes.  Any values set via SetOutputSpacing,
   * SetOutputOrigin, and SetOutputExtent will override these
   * values.  By default, the Spacing, Origin, and WholeExtent
   * of the Input are used.
   */
  virtual void SetInformationInput(vtkImageData*);
  vtkGetObjectMacro(InformationInput, vtkImageData);
  //@}

  //@{
  /**
   * Specify whether to transform the spacing, origin and extent
   * of the Input (or the InformationInput) according to the
   * direction cosines and origin of the ResliceAxes before applying
   * them as the default output spacing, origin and extent
   * (default: On).
   */
  vtkSetMacro(TransformInputSampling, int);
  vtkBooleanMacro(TransformInputSampling, int);
  vtkGetMacro(TransformInputSampling, int);
  //@}

  //@{
  /**
   * Turn this on if you want to guarantee that the extent of the
   * output will be large enough to ensure that none of the
   * data will be cropped (default: Off).
   */
  vtkSetMacro(AutoCropOutput, int);
  vtkBooleanMacro(AutoCropOutput, int);
  vtkGetMacro(AutoCropOutput, int);
  //@}

  //@{
  /**
   * Turn on wrap-pad feature (default: Off).
   */
  vtkSetMacro(Wrap, int);
  vtkGetMacro(Wrap, int);
  vtkBooleanMacro(Wrap, int);
  //@}

  //@{
  /**
   * Turn on mirror-pad feature (default: Off).
   * This will override the wrap-pad.
   */
  vtkSetMacro(Mirror, int);
  vtkGetMacro(Mirror, int);
  vtkBooleanMacro(Mirror, int);
  //@}

  //@{
  /**
   * Extend the apparent input border by a half voxel (default: On).
   * This changes how interpolation is handled at the borders of the
   * input image: if the center of an output voxel is beyond the edge
   * of the input image, but is within a half voxel width of the edge
   * (using the input voxel width), then the value of the output voxel
   * is calculated as if the input's edge voxels were duplicated past
   * the edges of the input.
   * This has no effect if Mirror or Wrap are on.
   */
  vtkSetMacro(Border, int);
  vtkGetMacro(Border, int);
  vtkBooleanMacro(Border, int);
  //@}

  //@{
  /**
   * Set interpolation mode (default: nearest neighbor).
   */
  vtkSetClampMacro(InterpolationMode, int,
                   VTK_RESLICE_NEAREST, VTK_RESLICE_CUBIC);
  vtkGetMacro(InterpolationMode, int);
  void SetInterpolationModeToNearestNeighbor() {
    this->SetInterpolationMode(VTK_RESLICE_NEAREST); };
  void SetInterpolationModeToLinear() {
    this->SetInterpolationMode(VTK_RESLICE_LINEAR); };
  void SetInterpolationModeToCubic() {
    this->SetInterpolationMode(VTK_RESLICE_CUBIC); };
  virtual const char *GetInterpolationModeAsString();
  //@}

  //@{
  /**
   * Set the interpolator to use.  The default interpolator
   * supports the Nearest, Linear, and Cubic interpolation modes.
   */
  virtual void SetInterpolator(vtkAbstractImageInterpolator *sampler);
  virtual vtkAbstractImageInterpolator *GetInterpolator();
  //@}

  //@{
  /**
   * Set the slab mode, for generating thick slices. The default is Mean.
   * If SetSlabNumberOfSlices(N) is called with N greater than one, then
   * each output slice will actually be a composite of N slices.  This method
   * specifies the compositing mode to be used.
   */
  vtkSetClampMacro(SlabMode, int, VTK_IMAGE_SLAB_MIN, VTK_IMAGE_SLAB_SUM);
  vtkGetMacro(SlabMode, int);
  void SetSlabModeToMin() {
    this->SetSlabMode(VTK_IMAGE_SLAB_MIN); };
  void SetSlabModeToMax() {
    this->SetSlabMode(VTK_IMAGE_SLAB_MAX); };
  void SetSlabModeToMean() {
    this->SetSlabMode(VTK_IMAGE_SLAB_MEAN); };
  void SetSlabModeToSum() {
    this->SetSlabMode(VTK_IMAGE_SLAB_SUM); };
  virtual const char *GetSlabModeAsString();
  //@}

  //@{
  /**
   * Set the number of slices that will be combined to create the slab.
   */
  vtkSetMacro(SlabNumberOfSlices, int);
  vtkGetMacro(SlabNumberOfSlices, int);
  //@}

  //@{
  /**
   * Use trapezoid integration for slab computation.  All this does is
   * weigh the first and last slices by half when doing sum and mean.
   * It is off by default.
   */
  vtkSetMacro(SlabTrapezoidIntegration, int);
  vtkBooleanMacro(SlabTrapezoidIntegration, int);
  vtkGetMacro(SlabTrapezoidIntegration, int);
  //@}

  //@{
  /**
   * The slab spacing as a fraction of the output slice spacing.
   * When one of the various slab modes is chosen, each output slice is
   * produced by generating several "temporary" output slices and then
   * combining them according to the slab mode.  By default, the spacing
   * between these temporary slices is the Z component of the OutputSpacing.
   * This method sets the spacing between these temporary slices to be a
   * fraction of the output spacing.
   */
  vtkSetMacro(SlabSliceSpacingFraction, double);
  vtkGetMacro(SlabSliceSpacingFraction, double);
  //@}

  //@{
  /**
   * Turn on and off optimizations (default on, they should only be
   * turned off for testing purposes).
   */
  vtkSetMacro(Optimization, int);
  vtkGetMacro(Optimization, int);
  vtkBooleanMacro(Optimization, int);
  //@}

  //@{
  /**
   * Set a value to add to all the output voxels.
   * After a sample value has been interpolated from the input image, the
   * equation u = (v + ScalarShift)*ScalarScale will be applied to it before
   * it is written to the output image.  The result will always be clamped to
   * the limits of the output data type.
   */
  vtkSetMacro(ScalarShift, double);
  vtkGetMacro(ScalarShift, double);
  //@}

  //@{
  /**
   * Set multiplication factor to apply to all the output voxels.
   * After a sample value has been interpolated from the input image, the
   * equation u = (v + ScalarShift)*ScalarScale will be applied to it before
   * it is written to the output image.  The result will always be clamped to
   * the limits of the output data type.
   */
  vtkSetMacro(ScalarScale, double);
  vtkGetMacro(ScalarScale, double)
  //@}

  //@{
  /**
   * Set the scalar type of the output to be different from the input.
   * The default value is -1, which means that the input scalar type will be
   * used to set the output scalar type.  Otherwise, this must be set to one
   * of the following types: VTK_CHAR, VTK_SIGNED_CHAR, VTK_UNSIGNED_CHAR,
   * VTK_SHORT, VTK_UNSIGNED_SHORT, VTK_INT, VTK_UNSIGNED_INT, VTK_FLOAT,
   * or VTK_DOUBLE.  Other types are not permitted.  If the output type
   * is an integer type, the output will be rounded and clamped to the
   * limits of the type.
   */
  vtkSetMacro(OutputScalarType, int);
  vtkGetMacro(OutputScalarType, int);
  //@}

  //@{
  /**
   * Set the background color (for multi-component images).
   */
  vtkSetVector4Macro(BackgroundColor, double);
  vtkGetVector4Macro(BackgroundColor, double);
  //@}

  //@{
  /**
   * Set background grey level (for single-component images).
   */
  void SetBackgroundLevel(double v) { this->SetBackgroundColor(v,v,v,v); };
  double GetBackgroundLevel() { return this->GetBackgroundColor()[0]; };
  //@}

  //@{
  /**
   * Set the voxel spacing for the output data.  The default output
   * spacing is the input spacing permuted through the ResliceAxes.
   */
  virtual void SetOutputSpacing(double x, double y, double z);
  virtual void SetOutputSpacing(const double a[3]) {
    this->SetOutputSpacing(a[0], a[1], a[2]); };
  vtkGetVector3Macro(OutputSpacing, double);
  void SetOutputSpacingToDefault();
  //@}

  //@{
  /**
   * Set the origin for the output data.  The default output origin
   * is the input origin permuted through the ResliceAxes.
   */
  virtual void SetOutputOrigin(double x, double y, double z);
  virtual void SetOutputOrigin(const double a[3]) {
    this->SetOutputOrigin(a[0], a[1], a[2]); };
  vtkGetVector3Macro(OutputOrigin, double);
  void SetOutputOriginToDefault();
  //@}

  //@{
  /**
   * Set the extent for the output data.  The default output extent
   * is the input extent permuted through the ResliceAxes.
   */
  virtual void SetOutputExtent(int a, int b, int c, int d, int e, int f);
  virtual void SetOutputExtent(const int a[6]) {
    this->SetOutputExtent(a[0], a[1], a[2], a[3], a[4], a[5]); };
  vtkGetVector6Macro(OutputExtent, int);
  void SetOutputExtentToDefault();
  //@}

  //@{
  /**
   * Force the dimensionality of the output to either 1, 2,
   * 3 or 0 (default: 3).  If the dimensionality is 2D, then
   * the Z extent of the output is forced to (0,0) and the Z
   * origin of the output is forced to 0.0 (i.e. the output
   * extent is confined to the xy plane).  If the dimensionality
   * is 1D, the output extent is confined to the x axis.
   * For 0D, the output extent consists of a single voxel at
   * (0,0,0).
   */
  vtkSetMacro(OutputDimensionality, int);
  vtkGetMacro(OutputDimensionality, int);
  //@}

  /**
   * When determining the modified time of the filter,
   * this check the modified time of the transform and matrix.
   */
  vtkMTimeType GetMTime() VTK_OVERRIDE;

  /**
   * Report object referenced by instances of this class.
   */
  void ReportReferences(vtkGarbageCollector*) VTK_OVERRIDE;

  //@{
  /**
   * Convenient methods for switching between nearest-neighbor and linear
   * interpolation.
   * InterpolateOn() is equivalent to SetInterpolationModeToLinear() and
   * InterpolateOff() is equivalent to SetInterpolationModeToNearestNeighbor()
   * You should not use these methods if you use the SetInterpolationMode
   * methods.
   */
  void SetInterpolate(int t) {
    if (t && !this->GetInterpolate()) {
      this->SetInterpolationModeToLinear(); }
    else if (!t && this->GetInterpolate()) {
      this->SetInterpolationModeToNearestNeighbor(); } };
  void InterpolateOn() {
    this->SetInterpolate(1); };
  void InterpolateOff() {
    this->SetInterpolate(0); };
  int GetInterpolate() {
    return (this->GetInterpolationMode() != VTK_RESLICE_NEAREST); };
  //@}

  //@{
  /**
   * Use a stencil to limit the calculations to a specific region of
   * the output.  Portions of the output that are 'outside' the stencil
   * will be cleared to the background color.
   */
  void SetStencilData(vtkImageStencilData *stencil);
  vtkImageStencilData *GetStencil();
  //@}

  //@{
  /**
   * Generate an output stencil that defines which pixels were
   * interpolated and which pixels were out-of-bounds of the input.
   */
  vtkSetMacro(GenerateStencilOutput, int);
  vtkGetMacro(GenerateStencilOutput, int);
  vtkBooleanMacro(GenerateStencilOutput, int);
  //@}

  //@{
  /**
   * Get the output stencil.
   */
  vtkAlgorithmOutput *GetStencilOutputPort() {
    return this->GetOutputPort(1); }
  vtkImageStencilData *GetStencilOutput();
  void SetStencilOutput(vtkImageStencilData *stencil);
  //@}

protected:
  vtkImageReslice();
  ~vtkImageReslice();

  vtkMatrix4x4 *ResliceAxes;
  double ResliceAxesDirectionCosines[9];
  double ResliceAxesOrigin[3];
  vtkAbstractTransform *ResliceTransform;
  vtkAbstractImageInterpolator *Interpolator;
  vtkImageData *InformationInput;
  int Wrap;
  int Mirror;
  int Border;
  int InterpolationMode;
  int Optimization;
  int SlabMode;
  int SlabNumberOfSlices;
  int SlabTrapezoidIntegration;
  double SlabSliceSpacingFraction;
  double ScalarShift;
  double ScalarScale;
  double BackgroundColor[4];
  double OutputOrigin[3];
  double OutputSpacing[3];
  int OutputExtent[6];
  int OutputScalarType;
  int OutputDimensionality;
  int TransformInputSampling;
  int AutoCropOutput;
  int HitInputExtent;
  int UsePermuteExecute;
  int ComputeOutputSpacing;
  int ComputeOutputOrigin;
  int ComputeOutputExtent;
  int GenerateStencilOutput;

  vtkMatrix4x4 *IndexMatrix;
  vtkAbstractTransform *OptimizedTransform;

  /**
   * This should be set to 1 by derived classes that override the
   * ConvertScalars method.
   */
  int HasConvertScalars;

  /**
   * This should be overridden by derived classes that operate on
   * the interpolated data before it is placed in the output.
   */
  virtual int ConvertScalarInfo(int &scalarType, int &numComponents);

  /**
   * This should be overridden by derived classes that operate on
   * the interpolated data before it is placed in the output.
   * The input data will usually be double or float (since the
   * interpolation routines use floating-point) but it could be
   * of any type.  This method will be called from multiple threads,
   * so it must be thread-safe in derived classes.
   */
  virtual void ConvertScalars(void *inPtr, void *outPtr,
                              int inputType, int inputNumComponents,
                              int count, int idX, int idY, int idZ,
                              int threadId);

  void ConvertScalarsBase(void *inPtr, void *outPtr,
                          int inputType, int inputNumComponents,
                          int count, int idX, int idY, int idZ, int threadId) {
    this->ConvertScalars(inPtr, outPtr, inputType, inputNumComponents,
                         count, idX, idY, idZ, threadId); }

  void GetAutoCroppedOutputBounds(vtkInformation *inInfo, double bounds[6]);
  virtual void AllocateOutputData(vtkImageData *output, vtkInformation *outInfo, int *uExtent) VTK_OVERRIDE;
  virtual vtkImageData *AllocateOutputData(vtkDataObject *, vtkInformation *) VTK_OVERRIDE;
  virtual int RequestInformation(vtkInformation *, vtkInformationVector **,
                                 vtkInformationVector *) VTK_OVERRIDE;
  virtual int RequestUpdateExtent(vtkInformation *, vtkInformationVector **,
                                  vtkInformationVector *) VTK_OVERRIDE;
  virtual int RequestData(vtkInformation *, vtkInformationVector **,
                          vtkInformationVector *) VTK_OVERRIDE;
  virtual void ThreadedRequestData(vtkInformation *request,
                                   vtkInformationVector **inputVector,
                                   vtkInformationVector *outputVector,
                                   vtkImageData ***inData,
                                   vtkImageData **outData, int ext[6], int id) VTK_OVERRIDE;
  virtual int FillInputPortInformation(int port, vtkInformation *info) VTK_OVERRIDE;
  virtual int FillOutputPortInformation(int port, vtkInformation *info) VTK_OVERRIDE;

  vtkMatrix4x4 *GetIndexMatrix(vtkInformation *inInfo,
                               vtkInformation *outInfo);
  vtkAbstractTransform *GetOptimizedTransform() {
    return this->OptimizedTransform; };

private:
  vtkImageReslice(const vtkImageReslice&) VTK_DELETE_FUNCTION;
  void operator=(const vtkImageReslice&) VTK_DELETE_FUNCTION;
};

#endif