/usr/include/vtk-7.1/vtkImageData.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkImageData.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkImageData
* @brief topologically and geometrically regular array of data
*
* vtkImageData is a data object that is a concrete implementation of
* vtkDataSet. vtkImageData represents a geometric structure that is
* a topological and geometrical regular array of points. Examples include
* volumes (voxel data) and pixmaps.
*/
#ifndef vtkImageData_h
#define vtkImageData_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkDataSet.h"
#include "vtkStructuredData.h" // Needed for inline methods
class vtkDataArray;
class vtkLine;
class vtkPixel;
class vtkVertex;
class vtkVoxel;
class VTKCOMMONDATAMODEL_EXPORT vtkImageData : public vtkDataSet
{
public:
static vtkImageData *New();
vtkTypeMacro(vtkImageData,vtkDataSet);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
/**
* Copy the geometric and topological structure of an input image data
* object.
*/
void CopyStructure(vtkDataSet *ds) VTK_OVERRIDE;
/**
* Return what type of dataset this is.
*/
int GetDataObjectType() VTK_OVERRIDE {return VTK_IMAGE_DATA;};
//@{
/**
* Standard vtkDataSet API methods. See vtkDataSet for more information.
*/
vtkIdType GetNumberOfCells() VTK_OVERRIDE;
vtkIdType GetNumberOfPoints() VTK_OVERRIDE;
double *GetPoint(vtkIdType ptId) VTK_OVERRIDE;
void GetPoint(vtkIdType id, double x[3]) VTK_OVERRIDE;
vtkCell *GetCell(vtkIdType cellId) VTK_OVERRIDE;
void GetCell(vtkIdType cellId, vtkGenericCell *cell) VTK_OVERRIDE;
void GetCellBounds(vtkIdType cellId, double bounds[6]) VTK_OVERRIDE;
virtual vtkIdType FindPoint(double x, double y, double z)
{
return this->vtkDataSet::FindPoint(x, y, z);
}
vtkIdType FindPoint(double x[3]) VTK_OVERRIDE;
vtkIdType FindCell(
double x[3], vtkCell *cell, vtkIdType cellId, double tol2,
int& subId, double pcoords[3], double *weights) VTK_OVERRIDE;
vtkIdType FindCell(
double x[3], vtkCell *cell, vtkGenericCell *gencell,
vtkIdType cellId, double tol2, int& subId,
double pcoords[3], double *weights) VTK_OVERRIDE;
vtkCell *FindAndGetCell(double x[3], vtkCell *cell, vtkIdType cellId,
double tol2, int& subId, double pcoords[3],
double *weights) VTK_OVERRIDE;
int GetCellType(vtkIdType cellId) VTK_OVERRIDE;
void GetCellPoints(vtkIdType cellId, vtkIdList *ptIds) VTK_OVERRIDE
{vtkStructuredData::GetCellPoints(cellId,ptIds,this->DataDescription,
this->GetDimensions());}
void GetPointCells(vtkIdType ptId, vtkIdList *cellIds) VTK_OVERRIDE
{vtkStructuredData::GetPointCells(ptId,cellIds,this->GetDimensions());}
void ComputeBounds() VTK_OVERRIDE;
int GetMaxCellSize() VTK_OVERRIDE {return 8;}; //voxel is the largest
//@}
/**
* Restore data object to initial state.
*/
void Initialize() VTK_OVERRIDE;
/**
* Same as SetExtent(0, i-1, 0, j-1, 0, k-1)
*/
virtual void SetDimensions(int i, int j, int k);
/**
* Same as SetExtent(0, dims[0]-1, 0, dims[1]-1, 0, dims[2]-1)
*/
virtual void SetDimensions(const int dims[3]);
/**
* Get dimensions of this structured points dataset.
* It is the number of points on each axis.
* Dimensions are computed from Extents during this call.
* \warning Non thread-safe, use second signature if you want it to be.
*/
virtual int *GetDimensions();
/**
* Get dimensions of this structured points dataset.
* It is the number of points on each axis.
* This method is thread-safe.
* \warning The Dimensions member variable is not updated during this call.
*/
virtual void GetDimensions(int dims[3]);
/**
* Convenience function computes the structured coordinates for a point x[3].
* The voxel is specified by the array ijk[3], and the parametric coordinates
* in the cell are specified with pcoords[3]. The function returns a 0 if the
* point x is outside of the volume, and a 1 if inside the volume.
*/
virtual int ComputeStructuredCoordinates(
const double x[3], int ijk[3], double pcoords[3]);
static int ComputeStructuredCoordinates( const double x[3], int ijk[3], double pcoords[3],
const int* extent,
const double* spacing,
const double* origin,
const double* bounds);
/**
* Given structured coordinates (i,j,k) for a voxel cell, compute the eight
* gradient values for the voxel corners. The order in which the gradient
* vectors are arranged corresponds to the ordering of the voxel points.
* Gradient vector is computed by central differences (except on edges of
* volume where forward difference is used). The scalars s are the scalars
* from which the gradient is to be computed. This method will treat
* only 3D structured point datasets (i.e., volumes).
*/
virtual void GetVoxelGradient(
int i,int j,int k, vtkDataArray *s, vtkDataArray *g);
/**
* Given structured coordinates (i,j,k) for a point in a structured point
* dataset, compute the gradient vector from the scalar data at that point.
* The scalars s are the scalars from which the gradient is to be computed.
* This method will treat structured point datasets of any dimension.
*/
virtual void GetPointGradient(
int i, int j, int k, vtkDataArray *s, double g[3]);
/**
* Return the dimensionality of the data.
*/
virtual int GetDataDimension();
/**
* Given a location in structured coordinates (i-j-k), return the point id.
*/
virtual vtkIdType ComputePointId(int ijk[3]) {
return vtkStructuredData::ComputePointIdForExtent(this->Extent,ijk);};
/**
* Given a location in structured coordinates (i-j-k), return the cell id.
*/
virtual vtkIdType ComputeCellId(int ijk[3]) {
return vtkStructuredData::ComputeCellIdForExtent(this->Extent,ijk);};
//@{
/**
* Set / Get the extent on just one axis
*/
virtual void SetAxisUpdateExtent(int axis, int min, int max,
const int* updateExtent,
int* axisUpdateExtent);
virtual void GetAxisUpdateExtent(int axis, int &min, int &max, const int* updateExtent);
//@}
//@{
/**
* Set/Get the extent. On each axis, the extent is defined by the index
* of the first point and the index of the last point. The extent should
* be set before the "Scalars" are set or allocated. The Extent is
* stored in the order (X, Y, Z).
* The dataset extent does not have to start at (0,0,0). (0,0,0) is just the
* extent of the origin.
* The first point (the one with Id=0) is at extent
* (Extent[0],Extent[2],Extent[4]). As for any dataset, a data array on point
* data starts at Id=0.
*/
virtual void SetExtent(int extent[6]);
virtual void SetExtent(int x1, int x2, int y1, int y2, int z1, int z2);
vtkGetVector6Macro(Extent, int);
//@}
//@{
/**
* These returns the minimum and maximum values the ScalarType can hold
* without overflowing.
*/
virtual double GetScalarTypeMin(vtkInformation* meta_data);
virtual double GetScalarTypeMin();
virtual double GetScalarTypeMax(vtkInformation* meta_data);
virtual double GetScalarTypeMax();
//@}
//@{
/**
* Get the size of the scalar type in bytes.
*/
virtual int GetScalarSize(vtkInformation* meta_data);
virtual int GetScalarSize();
//@}
//@{
/**
* Different ways to get the increments for moving around the data.
* GetIncrements() calls ComputeIncrements() to ensure the increments are
* up to date. The first three methods compute the increments based on the
* active scalar field while the next three, the scalar field is passed in.
*/
virtual vtkIdType *GetIncrements();
virtual void GetIncrements(vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
virtual void GetIncrements(vtkIdType inc[3]);
virtual vtkIdType *GetIncrements(vtkDataArray *scalars);
virtual void GetIncrements(vtkDataArray *scalars,
vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
virtual void GetIncrements(vtkDataArray *scalars, vtkIdType inc[3]);
//@}
//@{
/**
* Different ways to get the increments for moving around the data.
* incX is always returned with 0. incY is returned with the
* increment needed to move from the end of one X scanline of data
* to the start of the next line. incZ is filled in with the
* increment needed to move from the end of one image to the start
* of the next. The proper way to use these values is to for a loop
* over Z, Y, X, C, incrementing the pointer by 1 after each
* component. When the end of the component is reached, the pointer
* is set to the beginning of the next pixel, thus incX is properly set to 0.
* The first form of GetContinuousIncrements uses the active scalar field
* while the second form allows the scalar array to be passed in.
*/
virtual void GetContinuousIncrements(
int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
virtual void GetContinuousIncrements(vtkDataArray *scalars,
int extent[6], vtkIdType &incX, vtkIdType &incY, vtkIdType &incZ);
//@}
//@{
/**
* Access the native pointer for the scalar data
*/
virtual void *GetScalarPointerForExtent(int extent[6]);
virtual void *GetScalarPointer(int coordinates[3]);
virtual void *GetScalarPointer(int x, int y, int z);
virtual void *GetScalarPointer();
//@}
//@{
/**
* For access to data from tcl
*/
virtual float GetScalarComponentAsFloat(int x, int y, int z, int component);
virtual void SetScalarComponentFromFloat(
int x, int y, int z, int component, float v);
virtual double GetScalarComponentAsDouble(int x, int y, int z, int component);
virtual void SetScalarComponentFromDouble(
int x, int y, int z, int component, double v);
//@}
/**
* Allocate the point scalars for this dataset. The data type determines
* the type of the array (VTK_FLOAT, VTK_INT etc.) where as numComponents
* determines its number of components.
*/
virtual void AllocateScalars(int dataType, int numComponents);
/**
* Allocate the point scalars for this dataset. The data type and the
* number of components of the array is determined by the meta-data in
* the pipeline information. This is usually produced by a reader/filter
* upstream in the pipeline.
*/
virtual void AllocateScalars(vtkInformation* pipeline_info);
//@{
/**
* This method is passed a input and output region, and executes the filter
* algorithm to fill the output from the input.
* It just executes a switch statement to call the correct function for
* the regions data types.
*/
virtual void CopyAndCastFrom(vtkImageData *inData, int extent[6]);
virtual void CopyAndCastFrom(vtkImageData *inData, int x0, int x1,
int y0, int y1, int z0, int z1)
{int e[6]; e[0]=x0; e[1]=x1; e[2]=y0; e[3]=y1; e[4]=z0; e[5]=z1;
this->CopyAndCastFrom(inData, e);}
//@}
/**
* Reallocates and copies to set the Extent to updateExtent.
* This is used internally when the exact extent is requested,
* and the source generated more than the update extent.
*/
void Crop(const int* updateExtent) VTK_OVERRIDE;
/**
* Return the actual size of the data in kibibytes (1024 bytes). This number
* is valid only after the pipeline has updated. The memory size
* returned is guaranteed to be greater than or equal to the
* memory required to represent the data (e.g., extra space in
* arrays, etc. are not included in the return value). THIS METHOD
* IS THREAD SAFE.
*/
unsigned long GetActualMemorySize() VTK_OVERRIDE;
//@{
/**
* Set the spacing (width,height,length) of the cubical cells that
* compose the data set.
*/
vtkSetVector3Macro(Spacing,double);
vtkGetVector3Macro(Spacing,double);
//@}
//@{
/**
* Set/Get the origin of the dataset. The origin is the position in world
* coordinates of the point of extent (0,0,0). This point does not have to be
* part of the dataset, in other words, the dataset extent does not have to
* start at (0,0,0) and the origin can be outside of the dataset bounding
* box.
* The origin plus spacing determine the position in space of the points.
*/
vtkSetVector3Macro(Origin,double);
vtkGetVector3Macro(Origin,double);
//@}
static void SetScalarType(int, vtkInformation* meta_data);
static int GetScalarType(vtkInformation* meta_data);
static bool HasScalarType(vtkInformation* meta_data);
int GetScalarType();
const char* GetScalarTypeAsString()
{ return vtkImageScalarTypeNameMacro ( this->GetScalarType() ); };
//@{
/**
* Set/Get the number of scalar components for points. As with the
* SetScalarType method this is setting pipeline info.
*/
static void SetNumberOfScalarComponents( int n, vtkInformation* meta_data);
static int GetNumberOfScalarComponents(vtkInformation* meta_data);
static bool HasNumberOfScalarComponents(vtkInformation* meta_data);
int GetNumberOfScalarComponents();
//@}
/**
* Override these to handle origin, spacing, scalar type, and scalar
* number of components. See vtkDataObject for details.
*/
void CopyInformationFromPipeline(vtkInformation* information) VTK_OVERRIDE;
/**
* Copy information from this data object to the pipeline information.
* This is used by the vtkTrivialProducer that is created when someone
* calls SetInputData() to connect the image to a pipeline.
*/
void CopyInformationToPipeline(vtkInformation* information) VTK_OVERRIDE;
/**
* make the output data ready for new data to be inserted. For most
* objects we just call Initialize. But for image data we leave the old
* data in case the memory can be reused.
*/
void PrepareForNewData() VTK_OVERRIDE;
//@{
/**
* Shallow and Deep copy.
*/
void ShallowCopy(vtkDataObject *src) VTK_OVERRIDE;
void DeepCopy(vtkDataObject *src) VTK_OVERRIDE;
//@}
//--------------------------------------------------------------------------
// Methods that apply to any array (not just scalars).
// I am starting to experiment with generalizing imaging fitlers
// to operate on more than just scalars.
//@{
/**
* These are convenience methods for getting a pointer
* from any filed array. It is a start at expanding image filters
* to process any array (not just scalars).
*/
void *GetArrayPointerForExtent(vtkDataArray* array, int extent[6]);
void *GetArrayPointer(vtkDataArray* array, int coordinates[3]);
//@}
/**
* Since various arrays have different number of components,
* the will have different increments.
*/
void GetArrayIncrements(vtkDataArray *array, vtkIdType increments[3]);
/**
* Given how many pixel are required on a side for bounrary conditions (in
* bnds), the target extent to traverse, compute the internal extent (the
* extent for this ImageData that does not suffer from any boundary
* conditions) and place it in intExt
*/
void ComputeInternalExtent(int *intExt, int *tgtExt, int *bnds);
/**
* The extent type is a 3D extent
*/
int GetExtentType() VTK_OVERRIDE { return VTK_3D_EXTENT; };
//@{
/**
* Retrieve an instance of this class from an information object.
*/
static vtkImageData* GetData(vtkInformation* info);
static vtkImageData* GetData(vtkInformationVector* v, int i=0);
//@}
protected:
vtkImageData();
~vtkImageData() VTK_OVERRIDE;
// The extent of what is currently in the structured grid.
// Dimensions is just an array to return a value.
// Its contents are out of data until GetDimensions is called.
int Dimensions[3];
vtkIdType Increments[3];
double Origin[3];
double Spacing[3];
int Extent[6];
// The first method assumes Active Scalars
void ComputeIncrements();
// This one is given the number of components of the
// scalar field explicitly
void ComputeIncrements(int numberOfComponents);
void ComputeIncrements(vtkDataArray *scalars);
// The first method assumes Acitive Scalars
void ComputeIncrements(vtkIdType inc[3]);
// This one is given the number of components of the
// scalar field explicitly
void ComputeIncrements(int numberOfComponents, vtkIdType inc[3]);
void ComputeIncrements(vtkDataArray *scalars, vtkIdType inc[3]);
void CopyOriginAndSpacingFromPipeline(vtkInformation* info);
vtkTimeStamp ExtentComputeTime;
void SetDataDescription(int desc);
int GetDataDescription() { return this->DataDescription; }
private:
void InternalImageDataCopy(vtkImageData *src);
private:
friend class vtkUniformGrid;
// for the GetCell method
vtkVertex *Vertex;
vtkLine *Line;
vtkPixel *Pixel;
vtkVoxel *Voxel;
// for the GetPoint method
double Point[3];
int DataDescription;
vtkImageData(const vtkImageData&) VTK_DELETE_FUNCTION;
void operator=(const vtkImageData&) VTK_DELETE_FUNCTION;
};
//----------------------------------------------------------------------------
inline void vtkImageData::ComputeIncrements()
{
this->ComputeIncrements(this->Increments);
}
//----------------------------------------------------------------------------
inline void vtkImageData::ComputeIncrements(int numberOfComponents)
{
this->ComputeIncrements(numberOfComponents, this->Increments);
}
//----------------------------------------------------------------------------
inline void vtkImageData::ComputeIncrements(vtkDataArray *scalars)
{
this->ComputeIncrements(scalars, this->Increments);
}
//----------------------------------------------------------------------------
inline double * vtkImageData::GetPoint(vtkIdType id)
{
this->GetPoint(id, this->Point);
return this->Point;
}
//----------------------------------------------------------------------------
inline vtkIdType vtkImageData::GetNumberOfPoints()
{
const int *extent = this->Extent;
vtkIdType dims[3];
dims[0] = extent[1] - extent[0] + 1;
dims[1] = extent[3] - extent[2] + 1;
dims[2] = extent[5] - extent[4] + 1;
return dims[0]*dims[1]*dims[2];
}
//----------------------------------------------------------------------------
inline int vtkImageData::GetDataDimension()
{
return vtkStructuredData::GetDataDimension(this->DataDescription);
}
#endif
|