This file is indexed.

/usr/include/vtk-7.1/vtkGeneralTransform.h is in libvtk7-dev 7.1.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/*=========================================================================

  Program:   Visualization Toolkit
  Module:    vtkGeneralTransform.h

  Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
  All rights reserved.
  See Copyright.txt or http://www.kitware.com/Copyright.htm for details.

     This software is distributed WITHOUT ANY WARRANTY; without even
     the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
     PURPOSE.  See the above copyright notice for more information.

=========================================================================*/
/**
 * @class   vtkGeneralTransform
 * @brief   allows operations on any transforms
 *
 * vtkGeneralTransform is like vtkTransform and vtkPerspectiveTransform,
 * but it will work with any vtkAbstractTransform as input.  It is
 * not as efficient as the other two, however, because arbitrary
 * transformations cannot be concatenated by matrix multiplication.
 * Transform concatenation is simulated by passing each input point
 * through each transform in turn.
 * @sa
 * vtkTransform vtkPerspectiveTransform
*/

#ifndef vtkGeneralTransform_h
#define vtkGeneralTransform_h

#include "vtkCommonTransformsModule.h" // For export macro
#include "vtkAbstractTransform.h"

#include "vtkMatrix4x4.h" // Needed for inline methods

class VTKCOMMONTRANSFORMS_EXPORT vtkGeneralTransform : public vtkAbstractTransform
{
public:
  static vtkGeneralTransform *New();

  vtkTypeMacro(vtkGeneralTransform,vtkAbstractTransform);
  void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;

  /**
   * Set this transformation to the identity transformation.  If
   * the transform has an Input, then the transformation will be
   * reset so that it is the same as the Input.
   */
  void Identity()
    { this->Concatenation->Identity(); this->Modified(); };

  /**
   * Invert the transformation.  This will also set a flag so that
   * the transformation will use the inverse of its Input, if an Input
   * has been set.
   */
  void Inverse() VTK_OVERRIDE
    { this->Concatenation->Inverse(); this->Modified(); }

  //@{
  /**
   * Create a translation matrix and concatenate it with the current
   * transformation according to PreMultiply or PostMultiply semantics.
   */
  void Translate(double x, double y, double z) {
    this->Concatenation->Translate(x,y,z); };
  void Translate(const double x[3]) { this->Translate(x[0], x[1], x[2]); };
  void Translate(const float x[3]) { this->Translate(x[0], x[1], x[2]); };
  //@}

  //@{
  /**
   * Create a rotation matrix and concatenate it with the current
   * transformation according to PreMultiply or PostMultiply semantics.
   * The angle is in degrees, and (x,y,z) specifies the axis that the
   * rotation will be performed around.
   */
  void RotateWXYZ(double angle, double x, double y, double z) {
    this->Concatenation->Rotate(angle,x,y,z); };
  void RotateWXYZ(double angle, const double axis[3]) {
    this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
  void RotateWXYZ(double angle, const float axis[3]) {
    this->RotateWXYZ(angle, axis[0], axis[1], axis[2]); };
  //@}

  //@{
  /**
   * Create a rotation matrix about the X, Y, or Z axis and concatenate
   * it with the current transformation according to PreMultiply or
   * PostMultiply semantics.  The angle is expressed in degrees.
   */
  void RotateX(double angle) { this->RotateWXYZ(angle, 1, 0, 0); };
  void RotateY(double angle) { this->RotateWXYZ(angle, 0, 1, 0); };
  void RotateZ(double angle) { this->RotateWXYZ(angle, 0, 0, 1); };
  //@}

  //@{
  /**
   * Create a scale matrix (i.e. set the diagonal elements to x, y, z)
   * and concatenate it with the current transformation according to
   * PreMultiply or PostMultiply semantics.
   */
  void Scale(double x, double y, double z) {
    this->Concatenation->Scale(x,y,z); };
  void Scale(const double s[3]) { this->Scale(s[0], s[1], s[2]); };
  void Scale(const float s[3]) { this->Scale(s[0], s[1], s[2]); };
  //@}

  //@{
  /**
   * Concatenates the matrix with the current transformation according
   * to PreMultiply or PostMultiply semantics.
   */
  void Concatenate(vtkMatrix4x4 *matrix) {
    this->Concatenate(*matrix->Element); };
  void Concatenate(const double elements[16]) {
    this->Concatenation->Concatenate(elements); };
  //@}

  /**
   * Concatenate the specified transform with the current transformation
   * according to PreMultiply or PostMultiply semantics.
   * The concatenation is pipelined, meaning that if any of the
   * transformations are changed, even after Concatenate() is called,
   * those changes will be reflected when you call TransformPoint().
   */
  void Concatenate(vtkAbstractTransform *transform);

  /**
   * Sets the internal state of the transform to PreMultiply. All subsequent
   * operations will occur before those already represented in the
   * current transformation.  In homogeneous matrix notation, M = M*A where
   * M is the current transformation matrix and A is the applied matrix.
   * The default is PreMultiply.
   */
  void PreMultiply() {
    if (this->Concatenation->GetPreMultiplyFlag()) { return; }
    this->Concatenation->SetPreMultiplyFlag(1); this->Modified(); };

  /**
   * Sets the internal state of the transform to PostMultiply. All subsequent
   * operations will occur after those already represented in the
   * current transformation.  In homogeneous matrix notation, M = A*M where
   * M is the current transformation matrix and A is the applied matrix.
   * The default is PreMultiply.
   */
  void PostMultiply()  {
    if (!this->Concatenation->GetPreMultiplyFlag()) { return; }
    this->Concatenation->SetPreMultiplyFlag(0); this->Modified(); };

  /**
   * Get the total number of transformations that are linked into this
   * one via Concatenate() operations or via SetInput().
   */
  int GetNumberOfConcatenatedTransforms() {
    return this->Concatenation->GetNumberOfTransforms() +
      (this->Input == NULL ? 0 : 1); };

  /**
   * Get one of the concatenated transformations as a vtkAbstractTransform.
   * These transformations are applied, in series, every time the
   * transformation of a coordinate occurs.  This method is provided
   * to make it possible to decompose a transformation into its
   * constituents, for example to save a transformation to a file.
   */
  vtkAbstractTransform *GetConcatenatedTransform(int i) {
    if (this->Input == NULL) {
      return this->Concatenation->GetTransform(i); }
    else if (i < this->Concatenation->GetNumberOfPreTransforms()) {
      return this->Concatenation->GetTransform(i); }
    else if (i > this->Concatenation->GetNumberOfPreTransforms()) {
      return this->Concatenation->GetTransform(i-1); }
    else if (this->GetInverseFlag()) {
      return this->Input->GetInverse(); }
    else {
      return this->Input; } };

  //@{
  /**
   * Set the input for this transformation.  This will be used as the
   * base transformation if it is set.  This method allows you to build
   * a transform pipeline: if the input is modified, then this transformation
   * will automatically update accordingly.  Note that the InverseFlag,
   * controlled via Inverse(), determines whether this transformation
   * will use the Input or the inverse of the Input.
   */
  void SetInput(vtkAbstractTransform *input);
  vtkAbstractTransform *GetInput() { return this->Input; };
  //@}

  /**
   * Get the inverse flag of the transformation.  This controls
   * whether it is the Input or the inverse of the Input that
   * is used as the base transformation.  The InverseFlag is
   * flipped every time Inverse() is called.  The InverseFlag
   * is off when a transform is first created.
   */
  int GetInverseFlag() {
    return this->Concatenation->GetInverseFlag(); };

  //@{
  /**
   * Pushes the current transformation onto the transformation stack.
   */
  void Push() { if (this->Stack == NULL) {
                    this->Stack = vtkTransformConcatenationStack::New(); }
                this->Stack->Push(&this->Concatenation);
                this->Modified(); };
  //@}

  //@{
  /**
   * Deletes the transformation on the top of the stack and sets the top
   * to the next transformation on the stack.
   */
  void Pop() { if (this->Stack == NULL) { return; }
               this->Stack->Pop(&this->Concatenation);
               this->Modified(); };
  //@}

  //@{
  /**
   * This will calculate the transformation without calling Update.
   * Meant for use only within other VTK classes.
   */
  void InternalTransformPoint(const float in[3], float out[3]) VTK_OVERRIDE;
  void InternalTransformPoint(const double in[3], double out[3]) VTK_OVERRIDE;
  //@}

  //@{
  /**
   * This will calculate the transformation as well as its derivative
   * without calling Update.  Meant for use only within other VTK
   * classes.
   */
  void InternalTransformDerivative(const float in[3], float out[3],
                                   float derivative[3][3]) VTK_OVERRIDE;
  void InternalTransformDerivative(const double in[3], double out[3],
                                   double derivative[3][3]) VTK_OVERRIDE;
  //@}

  /**
   * Check for self-reference.  Will return true if concatenating
   * with the specified transform, setting it to be our inverse,
   * or setting it to be our input will create a circular reference.
   * CircuitCheck is automatically called by SetInput(), SetInverse(),
   * and Concatenate(vtkXTransform *).  Avoid using this function,
   * it is experimental.
   */
  int CircuitCheck(vtkAbstractTransform *transform) VTK_OVERRIDE;

  /**
   * Make another transform of the same type.
   */
  vtkAbstractTransform *MakeTransform() VTK_OVERRIDE;

  /**
   * Override GetMTime to account for input and concatenation.
   */
  vtkMTimeType GetMTime() VTK_OVERRIDE;

protected:
  vtkGeneralTransform();
  ~vtkGeneralTransform() VTK_OVERRIDE;

  void InternalDeepCopy(vtkAbstractTransform *t) VTK_OVERRIDE;
  void InternalUpdate() VTK_OVERRIDE;

  vtkAbstractTransform *Input;
  vtkTransformConcatenation *Concatenation;
  vtkTransformConcatenationStack *Stack;
private:
  vtkGeneralTransform(const vtkGeneralTransform&) VTK_DELETE_FUNCTION;
  void operator=(const vtkGeneralTransform&) VTK_DELETE_FUNCTION;
};


#endif