/usr/include/vtk-7.1/vtkGaussianSplatter.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkGaussianSplatter.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkGaussianSplatter
* @brief splat points into a volume with an elliptical, Gaussian distribution
*
* vtkGaussianSplatter is a filter that injects input points into a
* structured points (volume) dataset. As each point is injected, it "splats"
* or distributes values to nearby voxels. Data is distributed using an
* elliptical, Gaussian distribution function. The distribution function is
* modified using scalar values (expands distribution) or normals
* (creates ellipsoidal distribution rather than spherical).
*
* In general, the Gaussian distribution function f(x) around a given
* splat point p is given by
*
* f(x) = ScaleFactor * exp( ExponentFactor*((r/Radius)**2) )
*
* where x is the current voxel sample point; r is the distance |x-p|
* ExponentFactor <= 0.0, and ScaleFactor can be multiplied by the scalar
* value of the point p that is currently being splatted.
*
* If points normals are present (and NormalWarping is on), then the splat
* function becomes elliptical (as compared to the spherical one described
* by the previous equation). The Gaussian distribution function then
* becomes:
*
* f(x) = ScaleFactor *
* exp( ExponentFactor*( ((rxy/E)**2 + z**2)/R**2) )
*
* where E is a user-defined eccentricity factor that controls the elliptical
* shape of the splat; z is the distance of the current voxel sample point
* along normal N; and rxy is the distance of x in the direction
* prependicular to N.
*
* This class is typically used to convert point-valued distributions into
* a volume representation. The volume is then usually iso-surfaced or
* volume rendered to generate a visualization. It can be used to create
* surfaces from point distributions, or to create structure (i.e.,
* topology) when none exists.
*
* @warning
* The input to this filter is any dataset type. This filter can be used
* to resample any form of data, i.e., the input data need not be
* unstructured.
*
* @warning
* Some voxels may never receive a contribution during the splatting process.
* The final value of these points can be specified with the "NullValue"
* instance variable.
*
* @warning
* This class has been threaded with vtkSMPTools. Using TBB or other
* non-sequential type (set in the CMake variable
* VTK_SMP_IMPLEMENTATION_TYPE) may improve performance significantly.
*
* @sa
* vtkShepardMethod vtkCheckerboardSplatter
*/
#ifndef vtkGaussianSplatter_h
#define vtkGaussianSplatter_h
#include "vtkImagingHybridModule.h" // For export macro
#include "vtkImageAlgorithm.h"
#define VTK_ACCUMULATION_MODE_MIN 0
#define VTK_ACCUMULATION_MODE_MAX 1
#define VTK_ACCUMULATION_MODE_SUM 2
class vtkDoubleArray;
class vtkCompositeDataSet;
class vtkGaussianSplatterAlgorithm;
class VTKIMAGINGHYBRID_EXPORT vtkGaussianSplatter : public vtkImageAlgorithm
{
public:
vtkTypeMacro(vtkGaussianSplatter,vtkImageAlgorithm);
void PrintSelf(ostream& os, vtkIndent indent);
/**
* Construct object with dimensions=(50,50,50); automatic computation of
* bounds; a splat radius of 0.1; an exponent factor of -5; and normal and
* scalar warping turned on.
*/
static vtkGaussianSplatter *New();
//@{
/**
* Set / get the dimensions of the sampling structured point set. Higher
* values produce better results but are much slower.
*/
void SetSampleDimensions(int i, int j, int k);
void SetSampleDimensions(int dim[3]);
vtkGetVectorMacro(SampleDimensions,int,3);
//@}
//@{
/**
* Set / get the (xmin,xmax, ymin,ymax, zmin,zmax) bounding box in which
* the sampling is performed. If any of the (min,max) bounds values are
* min >= max, then the bounds will be computed automatically from the input
* data. Otherwise, the user-specified bounds will be used.
*/
vtkSetVector6Macro(ModelBounds,double);
vtkGetVectorMacro(ModelBounds,double,6);
//@}
//@{
/**
* Set / get the radius of propagation of the splat. This value is expressed
* as a percentage of the length of the longest side of the sampling
* volume. Smaller numbers greatly reduce execution time.
*/
vtkSetClampMacro(Radius,double,0.0,1.0);
vtkGetMacro(Radius,double);
//@}
//@{
/**
* Multiply Gaussian splat distribution by this value. If ScalarWarping
* is on, then the Scalar value will be multiplied by the ScaleFactor
* times the Gaussian function.
*/
vtkSetClampMacro(ScaleFactor,double,0.0,VTK_DOUBLE_MAX);
vtkGetMacro(ScaleFactor,double);
//@}
//@{
/**
* Set / get the sharpness of decay of the splats. This is the
* exponent constant in the Gaussian equation. Normally this is
* a negative value.
*/
vtkSetMacro(ExponentFactor,double);
vtkGetMacro(ExponentFactor,double);
//@}
//@{
/**
* Turn on/off the generation of elliptical splats. If normal warping is
* on, then the input normals affect the distribution of the splat. This
* boolean is used in combination with the Eccentricity ivar.
*/
vtkSetMacro(NormalWarping,int);
vtkGetMacro(NormalWarping,int);
vtkBooleanMacro(NormalWarping,int);
//@}
//@{
/**
* Control the shape of elliptical splatting. Eccentricity is the ratio
* of the major axis (aligned along normal) to the minor (axes) aligned
* along other two axes. So Eccentricity > 1 creates needles with the
* long axis in the direction of the normal; Eccentricity<1 creates
* pancakes perpendicular to the normal vector.
*/
vtkSetClampMacro(Eccentricity,double,0.001,VTK_DOUBLE_MAX);
vtkGetMacro(Eccentricity,double);
//@}
//@{
/**
* Turn on/off the scaling of splats by scalar value.
*/
vtkSetMacro(ScalarWarping,int);
vtkGetMacro(ScalarWarping,int);
vtkBooleanMacro(ScalarWarping,int);
//@}
//@{
/**
* Turn on/off the capping of the outer boundary of the volume
* to a specified cap value. This can be used to close surfaces
* (after iso-surfacing) and create other effects.
*/
vtkSetMacro(Capping,int);
vtkGetMacro(Capping,int);
vtkBooleanMacro(Capping,int);
//@}
//@{
/**
* Specify the cap value to use. (This instance variable only has effect
* if the ivar Capping is on.)
*/
vtkSetMacro(CapValue,double);
vtkGetMacro(CapValue,double);
//@}
//@{
/**
* Specify the scalar accumulation mode. This mode expresses how scalar
* values are combined when splats are overlapped. The Max mode acts
* like a set union operation and is the most commonly used; the Min
* mode acts like a set intersection, and the sum is just weird.
*/
vtkSetClampMacro(AccumulationMode,int,
VTK_ACCUMULATION_MODE_MIN,VTK_ACCUMULATION_MODE_SUM);
vtkGetMacro(AccumulationMode,int);
void SetAccumulationModeToMin()
{this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MIN);}
void SetAccumulationModeToMax()
{this->SetAccumulationMode(VTK_ACCUMULATION_MODE_MAX);}
void SetAccumulationModeToSum()
{this->SetAccumulationMode(VTK_ACCUMULATION_MODE_SUM);}
const char *GetAccumulationModeAsString();
//@}
//@{
/**
* Set the Null value for output points not receiving a contribution from the
* input points. (This is the initial value of the voxel samples.)
*/
vtkSetMacro(NullValue,double);
vtkGetMacro(NullValue,double);
//@}
//@{
/**
* Compute the size of the sample bounding box automatically from the
* input data. This is an internal helper function.
*/
void ComputeModelBounds(vtkDataSet *input, vtkImageData *output,
vtkInformation *outInfo);
void ComputeModelBounds(vtkCompositeDataSet *input, vtkImageData *output,
vtkInformation *outInfo);
//@}
//@{
/**
* Provide access to templated helper class. Note that SamplePoint() method
* is public here because some compilers don't handle friend functions
* properly.
*/
friend class vtkGaussianSplatterAlgorithm;
double SamplePoint(double x[3]) //for compilers who can't handle this
{return (this->*Sample)(x);}
void SetScalar(int idx, double dist2, double *sPtr)
{
double v = (this->*SampleFactor)(this->S) * exp(static_cast<double>
(this->ExponentFactor*(dist2)/(this->Radius2)));
//@}
if ( ! this->Visited[idx] )
{
this->Visited[idx] = 1;
*sPtr = v;
}
else
{
switch (this->AccumulationMode)
{
case VTK_ACCUMULATION_MODE_MIN:
if ( *sPtr > v )
{
*sPtr = v;
}
break;
case VTK_ACCUMULATION_MODE_MAX:
if ( *sPtr < v )
{
*sPtr = v;
}
break;
case VTK_ACCUMULATION_MODE_SUM:
*sPtr += v;
break;
}
}//not first visit
}
protected:
vtkGaussianSplatter();
~vtkGaussianSplatter() {}
virtual int FillInputPortInformation(int port, vtkInformation* info);
virtual int RequestInformation (vtkInformation *,
vtkInformationVector **,
vtkInformationVector *);
virtual int RequestData(vtkInformation *,
vtkInformationVector **,
vtkInformationVector *);
void Cap(vtkDoubleArray *s);
int SampleDimensions[3]; // dimensions of volume to splat into
double Radius; // maximum distance splat propagates (as fraction 0->1)
double ExponentFactor; // scale exponent of gaussian function
double ModelBounds[6]; // bounding box of splatting dimensions
int NormalWarping; // on/off warping of splat via normal
double Eccentricity;// elliptic distortion due to normals
int ScalarWarping; // on/off warping of splat via scalar
double ScaleFactor; // splat size influenced by scale factor
int Capping; // Cap side of volume to close surfaces
double CapValue; // value to use for capping
int AccumulationMode; // how to combine scalar values
double Gaussian(double x[3]);
double EccentricGaussian(double x[3]);
double ScalarSampling(double s)
{return this->ScaleFactor * s;}
double PositionSampling(double)
{return this->ScaleFactor;}
private:
double Radius2;
double (vtkGaussianSplatter::*Sample)(double x[3]);
double (vtkGaussianSplatter::*SampleFactor)(double s);
char *Visited;
double Eccentricity2;
double *P;
double *N;
double S;
double Origin[3];
double Spacing[3];
double SplatDistance[3];
double NullValue;
private:
vtkGaussianSplatter(const vtkGaussianSplatter&) VTK_DELETE_FUNCTION;
void operator=(const vtkGaussianSplatter&) VTK_DELETE_FUNCTION;
};
#endif
|