/usr/include/vtk-7.1/vtkCubicLine.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkCubicLine.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkCubicLine
* @brief cell represents a cubic , isoparametric 1D line
*
* vtkCubicLine is a concrete implementation of vtkNonLinearCell to represent a 1D Cubic line.
* The Cubic Line is the 4 nodes isoparametric parabolic line . The
* interpolation is the standard finite element, cubic isoparametric
* shape function. The cell includes two mid-edge nodes. The ordering of the
* four points defining the cell is point ids (0,1,2,3) where id #2 and #3 are the
* mid-edge nodes. Please note that the parametric coordinates lie between -1 and 1
* in accordance with most standard documentations.
* @par Thanks:
* <verbatim>
* This file has been developed by Oxalya - www.oxalya.com
* Copyright (c) EDF - www.edf.fr
* </verbatim>
*/
#ifndef vtkCubicLine_h
#define vtkCubicLine_h
#include "vtkCommonDataModelModule.h" // For export macro
#include "vtkNonLinearCell.h"
class vtkLine;
class vtkDoubleArray;
class VTKCOMMONDATAMODEL_EXPORT vtkCubicLine : public vtkNonLinearCell
{
public:
static vtkCubicLine *New();
vtkTypeMacro(vtkCubicLine,vtkNonLinearCell);
void PrintSelf(ostream& os, vtkIndent indent) VTK_OVERRIDE;
//@{
/**
* See the vtkCell API for descriptions of these methods.
*/
int GetCellType() VTK_OVERRIDE {return VTK_CUBIC_LINE;};
int GetCellDimension() VTK_OVERRIDE {return 1;};
int GetNumberOfEdges() VTK_OVERRIDE {return 0;};
int GetNumberOfFaces() VTK_OVERRIDE {return 0;};
vtkCell *GetEdge(int) VTK_OVERRIDE {return 0;};
vtkCell *GetFace(int) VTK_OVERRIDE {return 0;};
int CellBoundary(int subId, double pcoords[3], vtkIdList *pts) VTK_OVERRIDE;
void Contour(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *verts,
vtkCellArray *lines, vtkCellArray *polys,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd) VTK_OVERRIDE;
int EvaluatePosition(double x[3], double* closestPoint,
int& subId, double pcoords[3],
double& dist2, double *weights) VTK_OVERRIDE;
void EvaluateLocation(int& subId, double pcoords[3], double x[3],
double *weights) VTK_OVERRIDE;
int Triangulate(int index, vtkIdList *ptIds, vtkPoints *pts) VTK_OVERRIDE;
void Derivatives(int subId, double pcoords[3], double *values,
int dim, double *derivs) VTK_OVERRIDE;
double *GetParametricCoords() VTK_OVERRIDE;
//@}
/**
* Return the distance of the parametric coordinate provided to the
* cell. If inside the cell, a distance of zero is returned.
*/
double GetParametricDistance(double pcoords[3]) VTK_OVERRIDE;
/**
* Clip this line using scalar value provided. Like contouring, except
* that it cuts the line to produce other lines.
*/
void Clip(double value, vtkDataArray *cellScalars,
vtkIncrementalPointLocator *locator, vtkCellArray *lines,
vtkPointData *inPd, vtkPointData *outPd,
vtkCellData *inCd, vtkIdType cellId, vtkCellData *outCd,
int insideOut) VTK_OVERRIDE;
/**
* Return the center of the triangle in parametric coordinates.
*/
int GetParametricCenter(double pcoords[3]) VTK_OVERRIDE;
/**
* Line-line intersection. Intersection has to occur within [0,1] parametric
* coordinates and with specified tolerance.
*/
int IntersectWithLine(double p1[3], double p2[3], double tol, double& t,
double x[3], double pcoords[3], int& subId) VTK_OVERRIDE;
/**
* @deprecated Replaced by vtkCubicLine::InterpolateFunctions as of VTK 5.2
*/
static void InterpolationFunctions(double pcoords[3], double weights[4]);
/**
* @deprecated Replaced by vtkCubicLine::InterpolateDerivs as of VTK 5.2
*/
static void InterpolationDerivs(double pcoords[3], double derivs[4]);
//@{
/**
* Compute the interpolation functions/derivatives
* (aka shape functions/derivatives)
*/
void InterpolateFunctions(double pcoords[3], double weights[4]) VTK_OVERRIDE
{
vtkCubicLine::InterpolationFunctions(pcoords,weights);
}
void InterpolateDerivs(double pcoords[3], double derivs[4]) VTK_OVERRIDE
{
vtkCubicLine::InterpolationDerivs(pcoords,derivs);
}
//@}
protected:
vtkCubicLine();
~vtkCubicLine() VTK_OVERRIDE;
vtkLine *Line;
vtkDoubleArray *Scalars; //used to avoid New/Delete in contouring/clipping
private:
vtkCubicLine(const vtkCubicLine&) VTK_DELETE_FUNCTION;
void operator=(const vtkCubicLine&) VTK_DELETE_FUNCTION;
};
//----------------------------------------------------------------------------
inline int vtkCubicLine::GetParametricCenter(double pcoords[3])
{
pcoords[0]=pcoords[1] = pcoords[2] = 0.0;
return 0;
}
#endif
|