/usr/include/vtk-7.1/vtkBridgeCell.h is in libvtk7-dev 7.1.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | /*=========================================================================
Program: Visualization Toolkit
Module: vtkBridgeCell.h
Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
All rights reserved.
See Copyright.txt or http://www.kitware.com/Copyright.htm for details.
This software is distributed WITHOUT ANY WARRANTY; without even
the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the above copyright notice for more information.
=========================================================================*/
/**
* @class vtkBridgeCell
* @brief Implementation of vtkGenericAdaptorCell
*
* It is just an example that show how to implement the Generic. It is also
* used for testing and evaluating the Generic.
* @sa
* vtkGenericAdaptorCell, vtkBridgeDataSet
*/
#ifndef vtkBridgeCell_h
#define vtkBridgeCell_h
#include "vtkBridgeExport.h" //for module export macro
#include "vtkGenericAdaptorCell.h"
class vtkCell;
class vtkBridgeDataSet;
class vtkBridgeCellIterator;
class VTKTESTINGGENERICBRIDGE_EXPORT vtkBridgeCell : public vtkGenericAdaptorCell
{
public:
static vtkBridgeCell *New();
vtkTypeMacro(vtkBridgeCell,vtkGenericAdaptorCell);
void PrintSelf(ostream& os, vtkIndent indent);
/**
* Unique identification number of the cell over the whole
* data set. This unique key may not be contiguous.
*/
virtual vtkIdType GetId();
/**
* Does `this' a cell of a dataset? (otherwise, it is a boundary cell)
*/
virtual int IsInDataSet();
/**
* Type of the current cell.
* \post (result==VTK_HIGHER_ORDER_EDGE)||
* (result==VTK_HIGHER_ORDER_TRIANGLE)||
* (result==VTK_HIGHER_ORDER_TETRAHEDRON)
*/
virtual int GetType();
/**
* Topological dimension of the current cell.
* \post valid_result: result>=0 && result<=3
*/
virtual int GetDimension();
/**
* Interpolation order of the geometry.
* \post positive_result: result>=0
*/
virtual int GetGeometryOrder();
/**
* Does the cell have no higher-order interpolation for geometry?
* \post definition: result==(GetGeometryOrder()==1)
*/
int IsGeometryLinear();
/**
* Interpolation order of attribute `a' on the cell (may differ by cell).
* \pre a_exists: a!=0
* \post positive_result: result>=0
*/
virtual int GetAttributeOrder(vtkGenericAttribute *a);
/**
* Does the attribute `a' have no higher-order interpolation for the cell?
* \pre a_exists: a!=0
* \post definition: result==(GetAttributeOrder()==1)
*/
int IsAttributeLinear(vtkGenericAttribute *a);
/**
* Is the cell primary (i.e. not composite) ?
*/
virtual int IsPrimary();
/**
* Number of points that compose the cell.
* \post positive_result: result>=0
*/
virtual int GetNumberOfPoints();
/**
* Return the number of boundaries of dimension `dim' (or all dimensions
* greater than 0 and less than GetDimension() if -1) of the cell.
* When \a dim is -1, the number of vertices is not included in the
* count because vertices are a special case: a vertex will have
* at most a single field value associated with it; DOF nodes may have
* an arbitrary number of field values associated with them.
* \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
* \post positive_result: result>=0
*/
virtual int GetNumberOfBoundaries(int dim=-1);
/**
* Accumulated number of DOF nodes of the current cell. A DOF node is
* a component of cell with a given topological dimension. e.g.: a triangle
* has 4 DOF: 1 face and 3 edges. An hexahedron has 19 DOF:
* 1 region, 6 faces, and 12 edges.
* The number of vertices is not included in the
* count because vertices are a special case: a vertex will have
* at most a single field value associated with it; DOF nodes may have
* an arbitrary number of field values associated with them.
* \post valid_result: result==GetNumberOfBoundaries(-1)+1
*/
virtual int GetNumberOfDOFNodes();
/**
* Return the points of cell into `it'.
* \pre it_exists: it!=0
*/
virtual void GetPointIterator(vtkGenericPointIterator *it);
/**
* Create an empty cell iterator.
* \post result_exists: result!=0
*/
virtual vtkGenericCellIterator *NewCellIterator();
/**
* Return in `boundaries' the cells of dimension `dim' (or all dimensions
* less than GetDimension() if -1) that are part of the boundary of the cell.
* \pre valid_dim_range: (dim==-1) || ((dim>=0)&&(dim<GetDimension()))
* \pre boundaries_exist: boundaries!=0
*/
virtual void GetBoundaryIterator(vtkGenericCellIterator *boundaries,
int dim=-1);
//@{
/**
* Number of cells (dimension>boundary->GetDimension()) of the dataset
* that share the boundary `boundary' of `this'.
* `this' IS NOT INCLUDED.
* \pre boundary_exists: boundary!=0
* \pre real_boundary: !boundary->IsInDataSet()
* \pre cell_of_the_dataset: IsInDataSet()
* \pre boundary: HasBoundary(boundary)
* \post positive_result: result>=0
*/
virtual int CountNeighbors(vtkGenericAdaptorCell *boundary);
void CountEdgeNeighbors( int* sharing );
//@}
/**
* Put into `neighbors' the cells (dimension>boundary->GetDimension())
* of the dataset that share the boundary `boundary' of `this'.
* `this' IS NOT INCLUDED.
* \pre boundary_exists: boundary!=0
* \pre real_boundary: !boundary->IsInDataSet()
* \pre cell_of_the_dataset: IsInDataSet()
* \pre boundary: HasBoundary(boundary)
* \pre neighbors_exist: neighbors!=0
*/
virtual void GetNeighbors(vtkGenericAdaptorCell *boundary,
vtkGenericCellIterator *neighbors);
/**
* Compute the closest boundary of the current sub-cell `subId' for point
* `pcoord' (in parametric coordinates) in `boundary', and return whether
* the point is inside the cell or not. `boundary' is of dimension
* GetDimension()-1.
* \pre positive_subId: subId>=0
*/
virtual int FindClosestBoundary(int subId,
double pcoords[3],
vtkGenericCellIterator* &boundary);
/**
* Is `x' inside the current cell? It also evaluate parametric coordinates
* `pcoords', sub-cell id `subId' (0 means primary cell), distance squared
* to the sub-cell in `dist2' and closest corner point `closestPoint'.
* `dist2' and `closestPoint' are not evaluated if `closestPoint'==0.
* If a numerical error occurred, -1 is returned and all other results
* should be ignored.
* \post valid_result: result==-1 || result==0 || result==1
* \post positive_distance: result!=-1 implies (closestPoint!=0 implies
* dist2>=0)
*/
virtual int EvaluatePosition(double x[3],
double *closestPoint,
int &subId,
double pcoords[3],
double &dist2);
/**
* Determine global coordinates `x' from sub-cell `subId' and parametric
* coordinates `pcoords' in the cell.
* \pre positive_subId: subId>=0
* \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
* &&(pcoords[1]<=1)&&(0<=pcoords[2])&&(pcoords[2]<=1)
*/
virtual void EvaluateLocation(int subId,
double pcoords[3],
double x[3]);
/**
* Interpolate the attribute `a' at local position `pcoords' of the cell into
* `val'.
* \pre a_exists: a!=0
* \pre a_is_point_centered: a->GetCentering()==vtkPointCentered
* \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
* pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
* \pre val_exists: val!=0
* \pre valid_size: sizeof(val)==a->GetNumberOfComponents()
*/
virtual void InterpolateTuple(vtkGenericAttribute *a, double pcoords[3],
double *val);
/**
* Interpolate the whole collection of attributes `c' at local position
* `pcoords' of the cell into `val'. Only point centered attributes are
* taken into account.
* \pre c_exists: c!=0
* \pre clamped_point: pcoords[0]>=0 && pcoords[0]<=1 && pcoords[1]>=0 &&
* pcoords[1]<=1 && pcoords[2]>=0 && pcoords[2]<=1
* \pre val_exists: val!=0
* \pre valid_size: sizeof(val)==c->GetNumberOfPointCenteredComponents()
*/
virtual void InterpolateTuple(vtkGenericAttributeCollection *c, double pcoords[3],
double *val);
#if 0
/**
* Generate a contour (contouring primitives) for each `values' or with
* respect to an implicit function `f'. Contouring
* is performed on the scalar attribute (`attributes->GetActiveAttribute()',
* `attributes->GetActiveComponent()').
* Contouring interpolates the
* `attributes->GetNumberOfattributesToInterpolate()' attributes
* `attributes->GetAttributesToInterpolate()'.
* `locator', `verts', `lines', `polys', `outPd' and `outCd' are cumulative
* data arrays over cell iterations: they store the result of each call
* to Contour():
* - `locator' is points list that merges points as they are inserted (i.e.,
* prevents duplicates).
* - `verts' is an array of generated vertices
* - `lines' is an array of generated lines
* - `polys' is an array of generated polygons
* - `outPd' is an array of interpolated point data along the edge (if
* not-NULL)
* - `outCd' is an array of copied cell data of the current cell (if
* not-NULL)
* Note: the CopyAllocate() method must be invoked on both the output cell
* and point data.
* NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
* `vtkInformation'.
* \pre values_exist: (values!=0 && f==0) || (values==0 && f!=0)
* \pre attributes_exist: attributes!=0
* \pre locator_exists: locator!=0
* \pre verts_exist: verts!=0
* \pre lines_exist: lines!=0
* \pre polys_exist: polys!=0
*/
virtual void Contour(vtkContourValues *values,
vtkImplicitFunction *f,
vtkGenericAttributeCollection *attributes,
vtkPointLocator *locator,
vtkCellArray *verts,
vtkCellArray *lines,
vtkCellArray *polys,
vtkPointData *outPd,
vtkCellData *outCd);
#endif
#if 0
/**
* Cut (or clip) the current cell with respect to the contour defined by the
* `value' or the implicit function `f' of the scalar attribute
* (`attributes->GetActiveAttribute()',`attributes->GetActiveComponent()').
* If `f' exists, `value' is not used. The output is the part
* of the current cell which is inside the contour.
* The output is a set of zero, one or more cells of the same topological
* dimension as the current cell. Normally, cell points whose scalar value
* is greater than "value" are considered inside. If `insideOut' is on, this
* is reversed.
* Clipping interpolates the
* `attributes->GetNumberOfattributesToInterpolate()' attributes
* `attributes->GetAttributesToInterpolate()'.
* `locator', `connectivity', `outPd' and `outCd' are cumulative
* data arrays over cell iterations: they store the result of each call
* to Clip():
* - `locator' is points list that merges points as they are inserted (i.e.,
* prevents duplicates).
* - `connectivity' is an array of generated cells
* - `outPd' is an array of interpolated point data along the edge (if
* not-NULL)
* - `outCd' is an array of copied cell data of the current cell (if
* not-NULL)
* Note: the CopyAllocate() method must be invoked on both the output cell
* and point data.
* Also, if the output cell data is
* non-NULL, the cell data from the clipped cell is passed to the generated
* contouring primitives. (Note: the CopyAllocate() method must be invoked on
* both the output cell and point data.)
* NOTE: `vtkGenericAttributeCollection *attributes' will be replaced by a
* `vtkInformation'.
* \pre attributes_exist: attributes!=0
* \pre tess_exists: tess!=0
* \pre locator_exists: locator!=0
* \pre connectivity_exists: connectivity!=0
*/
virtual void Clip(double value,
vtkImplicitFunction *f,
vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
int insideOut,
vtkPointLocator *locator,
vtkCellArray *connectivity,
vtkPointData *outPd,
vtkCellData *outCd);
#endif
/**
* Is there an intersection between the current cell and the ray (`p1',`p2')
* according to a tolerance `tol'? If true, `x' is the global intersection,
* `t' is the parametric coordinate for the line, `pcoords' are the
* parametric coordinates for cell. `subId' is the sub-cell where
* the intersection occurs.
* \pre positive_tolerance: tol>0
*/
virtual int IntersectWithLine(double p1[3],
double p2[3],
double tol,
double &t,
double x[3],
double pcoords[3],
int &subId);
/**
* Compute derivatives `derivs' of the attribute `attribute' (from its
* values at the corner points of the cell) given sub-cell `subId' (0 means
* primary cell) and parametric coordinates `pcoords'.
* Derivatives are in the x-y-z coordinate directions for each data value.
* \pre positive_subId: subId>=0
* \pre clamped_pcoords: (0<=pcoords[0])&&(pcoords[0]<=1)&&(0<=pcoords[1])
* &&(pcoords[1]<=1)&&(0<=pcoords[2])%%(pcoords[2]<=1)
* \pre attribute_exists: attribute!=0
* \pre derivs_exists: derivs!=0
* \pre valid_size: sizeof(derivs)>=attribute->GetNumberOfComponents()*3
*/
virtual void Derivatives(int subId,
double pcoords[3],
vtkGenericAttribute *attribute,
double *derivs);
/**
* Compute the bounding box of the current cell in `bounds' in global
* coordinates.
* THREAD SAFE
*/
virtual void GetBounds(double bounds[6]);
/**
* Return the bounding box of the current cell in global coordinates.
* NOT THREAD SAFE
* \post result_exists: result!=0
* \post valid_size: sizeof(result)>=6
*/
virtual double *GetBounds();
/**
* Bounding box diagonal squared of the current cell.
* \post positive_result: result>=0
*/
virtual double GetLength2();
/**
* Center of the current cell in parametric coordinates `pcoords'.
* If the current cell is a composite, the return value is the sub-cell id
* that the center is in.
* \post valid_result: (result>=0) && (IsPrimary() implies result==0)
*/
virtual int GetParametricCenter(double pcoords[3]);
/**
* Distance of the parametric coordinate `pcoords' to the current cell.
* If inside the cell, a distance of zero is returned. This is used during
* picking to get the correct cell picked. (The tolerance will occasionally
* allow cells to be picked who are not really intersected "inside" the
* cell.)
* \post positive_result: result>=0
*/
virtual double GetParametricDistance(double pcoords[3]);
/**
* Return a contiguous array of parametric coordinates of the points defining
* the current cell. In other words, (px,py,pz, px,py,pz, etc..) The
* coordinates are ordered consistent with the definition of the point
* ordering for the cell. Note that 3D parametric coordinates are returned
* no matter what the topological dimension of the cell. It includes the DOF
* nodes.
* \post valid_result_exists: ((IsPrimary()) && (result!=0)) ||
* ((!IsPrimary()) && (result==0))
* result!=0 implies sizeof(result)==GetNumberOfPoints()
*/
virtual double *GetParametricCoords();
#if 0
//@{
/**
* Tessellate the cell if it is not linear or if at least one attribute of
* `attributes' is not linear. The output are linear cells of the same
* dimension than than cell. If the cell is linear and all attributes are
* linear, the output is just a copy of the current cell.
* `points', `cellArray', `pd' and `cd' are cumulative output data arrays
* over cell iterations: they store the result of each call to Tessellate().
* \pre attributes_exist: attributes!=0
* \pre points_exist: points!=0
* \pre cellArray_exists: cellArray!=0
* \pre pd_exist: pd!=0
* \pre cd_exists: cd!=0
*/
virtual void Tessellate(vtkGenericAttributeCollection *attributes,
vtkPoints *points, vtkCellArray* cellArray,
vtkPointData *pd, vtkCellData* cd);
#endif
// For the internals of the tesselation algorithm (the hash table in particular)
virtual int IsFaceOnBoundary(vtkIdType faceId);
virtual int IsOnBoundary();
//@}
//@{
/**
* Put into `id' the list of ids the point of the cell.
* \pre id_exists: id!=0
* \pre valid_size: sizeof(id)==GetNumberOfPoints();
*/
virtual void GetPointIds(vtkIdType *id);
#if 0
virtual void TriangulateFace(vtkGenericAttributeCollection *attributes,
vtkGenericCellTessellator *tess,
int index,
vtkPoints *pts, vtkCellArray *cellArray,
vtkPointData *pd,
vtkCellData *cd );
#endif
//@}
/**
* Return the ids of the vertices defining face `faceId'.
* \pre is_3d: this->GetDimension()==3
* \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
* \post result_exists: result!=0
* \post valid_size: sizeof(result)>=GetNumberOfVerticesOnFace(faceId)
*/
int *GetFaceArray(int faceId);
/**
* Return the number of vertices defining face `faceId'
* \pre is_3d: this->GetDimension()==3
* \pre valid_faceId_range: faceId>=0 && faceId<this->GetNumberOfBoundaries(2)
* \post positive_result: && result>0
*/
int GetNumberOfVerticesOnFace(int faceId);
/**
* Return the ids of the vertices defining edge `edgeId'.
* \pre valid_dimension: this->GetDimension()>=2
* \pre valid_edgeId_range: edgeId>=0 && edgeId<this->GetNumberOfBoundaries(1)
* \post result_exists: result!=0
* \post valid_size: sizeof(result)==2
*/
int *GetEdgeArray(int edgeId);
/**
* Used internally for the Bridge.
* Initialize the cell from a dataset `ds' and `cellid'.
* \pre ds_exists: ds!=0
* \pre valid_cellid: (cellid>=0) && (cellid<ds->GetNumberOfCells())
*/
void Init(vtkBridgeDataSet *ds,
vtkIdType cellid);
/**
* Used internally for the Bridge.
* Initialize the cell from a cell `c' and an `id'.
* \pre c_exists: c!=0
*/
void InitWithCell(vtkCell *c,
vtkIdType id);
/**
* Recursive copy of `other' into `this'.
* \pre other_exists: other!=0
* \pre other_differ: this!=other
*/
void DeepCopy(vtkBridgeCell *other);
protected:
vtkBridgeCell();
virtual ~vtkBridgeCell();
/**
* Allocate an array for the weights, only if it does not exist yet or if
* the capacity is too small.
*/
void AllocateWeights();
/**
* Compute the weights for parametric coordinates `pcoords'.
*/
void InterpolationFunctions(double pcoords[3], double *weights);
friend class vtkBridgeDataSet;
friend class vtkBridgeAttribute;
friend class vtkBridgeCellIterator;
friend class vtkBridgeCellIteratorOnDataSet;
friend class vtkBridgeCellIteratorOne;
friend class vtkBridgeCellIteratorOnCellBoundaries;
friend class vtkBridgePointIteratorOnCell;
vtkCell *Cell;
vtkBridgeDataSet *DataSet;
vtkIdType Id; // what does it mean for boundary cells?
int BoolIsInDataSet;
vtkBridgeCellIterator *InternalIterator; // used in Contour
double *Weights; // interpolation functions
int WeightsCapacity;
private:
vtkBridgeCell(const vtkBridgeCell&) VTK_DELETE_FUNCTION;
void operator=(const vtkBridgeCell&) VTK_DELETE_FUNCTION;
};
#endif
|