/usr/include/vigra/random.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-5ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 | /************************************************************************/
/* */
/* Copyright 2008 by Ullrich Koethe */
/* */
/* This file is part of the VIGRA computer vision library. */
/* The VIGRA Website is */
/* http://hci.iwr.uni-heidelberg.de/vigra/ */
/* Please direct questions, bug reports, and contributions to */
/* ullrich.koethe@iwr.uni-heidelberg.de or */
/* vigra@informatik.uni-hamburg.de */
/* */
/* Permission is hereby granted, free of charge, to any person */
/* obtaining a copy of this software and associated documentation */
/* files (the "Software"), to deal in the Software without */
/* restriction, including without limitation the rights to use, */
/* copy, modify, merge, publish, distribute, sublicense, and/or */
/* sell copies of the Software, and to permit persons to whom the */
/* Software is furnished to do so, subject to the following */
/* conditions: */
/* */
/* The above copyright notice and this permission notice shall be */
/* included in all copies or substantial portions of the */
/* Software. */
/* */
/* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND */
/* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES */
/* OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND */
/* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT */
/* HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, */
/* WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING */
/* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR */
/* OTHER DEALINGS IN THE SOFTWARE. */
/* */
/************************************************************************/
#ifndef VIGRA_RANDOM_HXX
#define VIGRA_RANDOM_HXX
#include "mathutil.hxx"
#include "functortraits.hxx"
#include "array_vector.hxx"
#include <ctime>
// includes to get the current process and thread IDs
// to be used for automated seeding
#ifdef _MSC_VER
#include <vigra/windows.h> // for GetCurrentProcessId() and GetCurrentThreadId()
#endif
#ifdef __linux__
#include <unistd.h> // for getpid()
#include <sys/syscall.h> // for SYS_gettid
#endif
#ifdef __APPLE__
#include <unistd.h> // for getpid()
#include <sys/syscall.h> // SYS_thread_selfid
#include <AvailabilityMacros.h> // to check if we are on MacOS 10.6 or later
#endif
namespace vigra {
enum RandomSeedTag { RandomSeed };
namespace detail {
enum RandomEngineTag { TT800, MT19937 };
template<RandomEngineTag EngineTag>
struct RandomState;
template <RandomEngineTag EngineTag>
void seed(UInt32 theSeed, RandomState<EngineTag> & engine)
{
engine.state_[0] = theSeed;
for(UInt32 i=1; i<RandomState<EngineTag>::N; ++i)
{
engine.state_[i] = 1812433253U * (engine.state_[i-1] ^ (engine.state_[i-1] >> 30)) + i;
}
}
template <class Iterator, RandomEngineTag EngineTag>
void seed(Iterator init, UInt32 key_length, RandomState<EngineTag> & engine)
{
const UInt32 N = RandomState<EngineTag>::N;
int k = static_cast<int>(std::max(N, key_length));
UInt32 i = 1, j = 0;
Iterator data = init;
for (; k; --k)
{
engine.state_[i] = (engine.state_[i] ^ ((engine.state_[i-1] ^ (engine.state_[i-1] >> 30)) * 1664525U))
+ *data + j; /* non linear */
++i; ++j; ++data;
if (i >= N)
{
engine.state_[0] = engine.state_[N-1];
i=1;
}
if (j>=key_length)
{
j=0;
data = init;
}
}
for (k=N-1; k; --k)
{
engine.state_[i] = (engine.state_[i] ^ ((engine.state_[i-1] ^ (engine.state_[i-1] >> 30)) * 1566083941U))
- i; /* non linear */
++i;
if (i>=N)
{
engine.state_[0] = engine.state_[N-1];
i=1;
}
}
engine.state_[0] = 0x80000000U; /* MSB is 1; assuring non-zero initial array */
}
template <RandomEngineTag EngineTag>
void seed(RandomSeedTag, RandomState<EngineTag> & engine)
{
static UInt32 globalCount = 0;
ArrayVector<UInt32> seedData;
seedData.push_back(static_cast<UInt32>(time(0)));
seedData.push_back(static_cast<UInt32>(clock()));
seedData.push_back(++globalCount);
std::size_t ptr((char*)&engine - (char*)0);
seedData.push_back(static_cast<UInt32>((ptr & 0xffffffff)));
static const UInt32 shift = sizeof(ptr) > 4 ? 32 : 16;
seedData.push_back(static_cast<UInt32>((ptr >> shift)));
#ifdef _MSC_VER
seedData.push_back(static_cast<UInt32>(GetCurrentProcessId()));
seedData.push_back(static_cast<UInt32>(GetCurrentThreadId()));
#endif
#ifdef __linux__
seedData.push_back(static_cast<UInt32>(getpid()));
# ifdef SYS_gettid
seedData.push_back(static_cast<UInt32>(syscall(SYS_gettid)));
# endif
#endif
#ifdef __APPLE__
seedData.push_back(static_cast<UInt32>(getpid()));
#if defined(SYS_thread_selfid) && (MAC_OS_X_VERSION_MIN_REQUIRED >= MAC_OS_X_VERSION_10_6)
// SYS_thread_selfid was introduced in MacOS 10.6
seedData.push_back(static_cast<UInt32>(syscall(SYS_thread_selfid)));
#endif
#endif
seed(seedData.begin(), seedData.size(), engine);
}
/* Tempered twister TT800 by M. Matsumoto */
template<>
struct RandomState<TT800>
{
static const UInt32 N = 25, M = 7;
mutable UInt32 state_[N];
mutable UInt32 current_;
RandomState()
: current_(0)
{
UInt32 seeds[N] = {
0x95f24dab, 0x0b685215, 0xe76ccae7, 0xaf3ec239, 0x715fad23,
0x24a590ad, 0x69e4b5ef, 0xbf456141, 0x96bc1b7b, 0xa7bdf825,
0xc1de75b7, 0x8858a9c9, 0x2da87693, 0xb657f9dd, 0xffdc8a9f,
0x8121da71, 0x8b823ecb, 0x885d05f5, 0x4e20cd47, 0x5a9ad5d9,
0x512c0c03, 0xea857ccd, 0x4cc1d30f, 0x8891a8a1, 0xa6b7aadb
};
for(UInt32 i=0; i<N; ++i)
state_[i] = seeds[i];
}
protected:
UInt32 get() const
{
if(current_ == N)
generateNumbers<void>();
UInt32 y = state_[current_++];
y ^= (y << 7) & 0x2b5b2500;
y ^= (y << 15) & 0xdb8b0000;
return y ^ (y >> 16);
}
template <class DUMMY>
void generateNumbers() const;
void seedImpl(RandomSeedTag)
{
seed(RandomSeed, *this);
}
void seedImpl(UInt32 theSeed)
{
seed(theSeed, *this);
}
template<class Iterator>
void seedImpl(Iterator init, UInt32 length)
{
seed(init, length, *this);
}
};
template <class DUMMY>
void RandomState<TT800>::generateNumbers() const
{
UInt32 mag01[2]= { 0x0, 0x8ebfd028 };
for(UInt32 i=0; i<N-M; ++i)
{
state_[i] = state_[i+M] ^ (state_[i] >> 1) ^ mag01[state_[i] % 2];
}
for (UInt32 i=N-M; i<N; ++i)
{
state_[i] = state_[i+(M-N)] ^ (state_[i] >> 1) ^ mag01[state_[i] % 2];
}
current_ = 0;
}
/* Mersenne twister MT19937 by M. Matsumoto */
template<>
struct RandomState<MT19937>
{
static const UInt32 N = 624, M = 397;
mutable UInt32 state_[N];
mutable UInt32 current_;
RandomState()
: current_(0)
{
seed(19650218U, *this);
}
protected:
UInt32 get() const
{
if(current_ == N)
generateNumbers<void>();
UInt32 x = state_[current_++];
x ^= (x >> 11);
x ^= (x << 7) & 0x9D2C5680U;
x ^= (x << 15) & 0xEFC60000U;
return x ^ (x >> 18);
}
template <class DUMMY>
void generateNumbers() const;
static UInt32 twiddle(UInt32 u, UInt32 v)
{
return (((u & 0x80000000U) | (v & 0x7FFFFFFFU)) >> 1)
^ ((v & 1U) ? 0x9908B0DFU : 0x0U);
}
void seedImpl(RandomSeedTag)
{
seed(RandomSeed, *this);
generateNumbers<void>();
}
void seedImpl(UInt32 theSeed)
{
seed(theSeed, *this);
generateNumbers<void>();
}
template<class Iterator>
void seedImpl(Iterator init, UInt32 length)
{
seed(19650218U, *this);
seed(init, length, *this);
generateNumbers<void>();
}
};
template <class DUMMY>
void RandomState<MT19937>::generateNumbers() const
{
for (unsigned int i = 0; i < (N - M); ++i)
{
state_[i] = state_[i + M] ^ twiddle(state_[i], state_[i + 1]);
}
for (unsigned int i = N - M; i < (N - 1); ++i)
{
state_[i] = state_[i + M - N] ^ twiddle(state_[i], state_[i + 1]);
}
state_[N - 1] = state_[M - 1] ^ twiddle(state_[N - 1], state_[0]);
current_ = 0;
}
} // namespace detail
/** \addtogroup RandomNumberGeneration Random Number Generation
High-quality random number generators and related functors.
*/
//@{
/** Generic random number generator.
The actual generator is passed in the template argument <tt>Engine</tt>. Two generators
are currently available:
<ul>
<li> <tt>RandomMT19937</tt>: The state-of-the-art <a href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html">Mersenne Twister</a> with a state length of 2<sup>19937</sup> and very high statistical quality.
<li> <tt>RandomTT800</tt>: (default) The Tempered Twister, a simpler predecessor of the Mersenne Twister with period length 2<sup>800</sup>.
</ul>
Both generators have been designed by <a href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/eindex.html">Makoto Matsumoto</a>.
<b>Traits defined:</b>
\verbatim FunctorTraits<RandomNumberGenerator<Engine> >::isInitializer \endverbatim
is true (<tt>VigraTrueType</tt>).
*/
template <class Engine = detail::RandomState<detail::MT19937> >
class RandomNumberGenerator
: public Engine
{
mutable double normalCached_;
mutable bool normalCachedValid_;
public:
/** Create a new random generator object with standard seed.
Due to standard seeding, the random numbers generated will always be the same.
This is useful for debugging.
*/
RandomNumberGenerator()
: normalCached_(0.0),
normalCachedValid_(false)
{}
/** Create a new random generator object with a random seed.
The seed is obtained from the machines current <tt>clock()</tt> and <tt>time()</tt>
values.
<b>Usage:</b>
\code
RandomNumberGenerator<> rnd = RandomNumberGenerator<>(RandomSeed);
\endcode
*/
RandomNumberGenerator(RandomSeedTag)
: normalCached_(0.0),
normalCachedValid_(false)
{
this->seedImpl(RandomSeed);
}
/** Create a new random generator object from the given seed.
The same seed will always produce identical random sequences.
If \a ignoreSeed is <tt>true</tt>, the given seed is ignored,
and the generator is seeded randomly (as if it was constructed
with <tt>RandomNumberGenerator<>(RandomSeed)</tt>). This allows
you to switch between random and deterministic seeding at
run-time.
*/
RandomNumberGenerator(UInt32 theSeed, bool ignoreSeed=false)
: normalCached_(0.0),
normalCachedValid_(false)
{
if(ignoreSeed)
this->seedImpl(RandomSeed);
else
this->seedImpl(theSeed);
}
/** Create a new random generator object from the given seed sequence.
Longer seed sequences lead to better initialization in the sense that the generator's
state space is covered much better than is possible with 32-bit seeds alone.
*/
template<class Iterator>
RandomNumberGenerator(Iterator init, UInt32 length)
: normalCached_(0.0),
normalCachedValid_(false)
{
this->seedImpl(init, length);
}
/** Re-initialize the random generator object with a random seed.
The seed is obtained from the machines current <tt>clock()</tt> and <tt>time()</tt>
values.
<b>Usage:</b>
\code
RandomNumberGenerator<> rnd = ...;
...
rnd.seed(RandomSeed);
\endcode
*/
void seed(RandomSeedTag)
{
this->seedImpl(RandomSeed);
normalCachedValid_ = false;
}
/** Re-initialize the random generator object from the given seed.
The same seed will always produce identical random sequences.
If \a ignoreSeed is <tt>true</tt>, the given seed is ignored,
and the generator is seeded randomly (as if <tt>seed(RandomSeed)</tt>
was called). This allows you to switch between random and deterministic
seeding at run-time.
*/
void seed(UInt32 theSeed, bool ignoreSeed=false)
{
if(ignoreSeed)
this->seedImpl(RandomSeed);
else
this->seedImpl(theSeed);
normalCachedValid_ = false;
}
/** Re-initialize the random generator object from the given seed sequence.
Longer seed sequences lead to better initialization in the sense that the generator's
state space is covered much better than is possible with 32-bit seeds alone.
*/
template<class Iterator>
void seed(Iterator init, UInt32 length)
{
this->seedImpl(init, length);
normalCachedValid_ = false;
}
/** Return a uniformly distributed integer random number in [0, 2<sup>32</sup>).
That is, 0 <= i < 2<sup>32</sup>.
*/
UInt32 operator()() const
{
return this->get();
}
/** Return a uniformly distributed integer random number in [0, 2<sup>32</sup>).
That is, 0 <= i < 2<sup>32</sup>.
*/
UInt32 uniformInt() const
{
return this->get();
}
#if 0 // difficult implementation necessary if low bits are not sufficiently random
// in [0,beyond)
UInt32 uniformInt(UInt32 beyond) const
{
if(beyond < 2)
return 0;
UInt32 factor = factorForUniformInt(beyond);
UInt32 res = this->get() / factor;
// Use rejection method to avoid quantization bias.
// On average, we will need two raw random numbers to generate one.
while(res >= beyond)
res = this->get() / factor;
return res;
}
#endif /* #if 0 */
/** Return a uniformly distributed integer random number in [0, <tt>beyond</tt>).
That is, 0 <= i < <tt>beyond</tt>.
*/
UInt32 uniformInt(UInt32 beyond) const
{
// in [0,beyond) -- simple implementation when low bits are sufficiently random, which is
// the case for TT800 and MT19937
if(beyond < 2)
return 0;
UInt32 remainder = (NumericTraits<UInt32>::max() - beyond + 1) % beyond;
UInt32 lastSafeValue = NumericTraits<UInt32>::max() - remainder;
UInt32 res = this->get();
// Use rejection method to avoid quantization bias.
// We will need two raw random numbers in amortized worst case.
while(res > lastSafeValue)
res = this->get();
return res % beyond;
}
/** Return a uniformly distributed double-precision random number in [0.0, 1.0).
That is, 0.0 <= i < 1.0. All 53-bit bits of the mantissa are random (two 32-bit integers are used to
create this number).
*/
double uniform53() const
{
// make full use of the entire 53-bit mantissa of a double, by Isaku Wada
return ( (this->get() >> 5) * 67108864.0 + (this->get() >> 6)) * (1.0/9007199254740992.0);
}
/** Return a uniformly distributed double-precision random number in [0.0, 1.0].
That is, 0.0 <= i <= 1.0. This number is computed by <tt>uniformInt()</tt> / (2<sup>32</sup> - 1),
so it has effectively only 32 random bits.
*/
double uniform() const
{
return static_cast<double>(this->get()) / 4294967295.0;
}
/** Return a uniformly distributed double-precision random number in [lower, upper].
That is, <tt>lower</tt> <= i <= <tt>upper</tt>. This number is computed
from <tt>uniform()</tt>, so it has effectively only 32 random bits.
*/
double uniform(double lower, double upper) const
{
vigra_precondition(lower < upper,
"RandomNumberGenerator::uniform(): lower bound must be smaller than upper bound.");
return uniform() * (upper-lower) + lower;
}
/** Return a standard normal variate (Gaussian) random number.
Mean is zero, standard deviation is 1.0. It uses the polar form of the
Box-Muller transform.
*/
double normal() const;
/** Return a normal variate (Gaussian) random number with the given mean and standard deviation.
It uses the polar form of the Box-Muller transform.
*/
double normal(double mean, double stddev) const
{
vigra_precondition(stddev > 0.0,
"RandomNumberGenerator::normal(): standard deviation must be positive.");
return normal()*stddev + mean;
}
/** Access the global (program-wide) instance of the present random number generator.
Normally, you will create a local generator by one of the constructor calls. But sometimes
it is useful to have all program parts access the same generator.
*/
static RandomNumberGenerator & global()
{
return global_;
}
static UInt32 factorForUniformInt(UInt32 range)
{
return (range > 2147483648U || range == 0)
? 1
: 2*(2147483648U / ceilPower2(range));
}
static RandomNumberGenerator global_;
};
template <class Engine>
RandomNumberGenerator<Engine> RandomNumberGenerator<Engine>::global_(RandomSeed);
template <class Engine>
double RandomNumberGenerator<Engine>::normal() const
{
if(normalCachedValid_)
{
normalCachedValid_ = false;
return normalCached_;
}
else
{
double x1, x2, w;
do
{
x1 = uniform(-1.0, 1.0);
x2 = uniform(-1.0, 1.0);
w = x1 * x1 + x2 * x2;
}
while ( w > 1.0 || w == 0.0);
w = std::sqrt( -2.0 * std::log( w ) / w );
normalCached_ = x2 * w;
normalCachedValid_ = true;
return x1 * w;
}
}
/** Shorthand for the TT800 random number generator class.
*/
typedef RandomNumberGenerator<detail::RandomState<detail::TT800> > RandomTT800;
/** Shorthand for the TT800 random number generator class (same as RandomTT800).
*/
typedef RandomNumberGenerator<detail::RandomState<detail::TT800> > TemperedTwister;
/** Shorthand for the MT19937 random number generator class.
*/
typedef RandomNumberGenerator<detail::RandomState<detail::MT19937> > RandomMT19937;
/** Shorthand for the MT19937 random number generator class (same as RandomMT19937).
*/
typedef RandomNumberGenerator<detail::RandomState<detail::MT19937> > MersenneTwister;
/** Access the global (program-wide) instance of the TT800 random number generator.
*/
inline RandomTT800 & randomTT800() { return RandomTT800::global(); }
/** Access the global (program-wide) instance of the MT19937 random number generator.
*/
inline RandomMT19937 & randomMT19937() { return RandomMT19937::global(); }
template <class Engine>
class FunctorTraits<RandomNumberGenerator<Engine> >
{
public:
typedef RandomNumberGenerator<Engine> type;
typedef VigraTrueType isInitializer;
typedef VigraFalseType isUnaryFunctor;
typedef VigraFalseType isBinaryFunctor;
typedef VigraFalseType isTernaryFunctor;
typedef VigraFalseType isUnaryAnalyser;
typedef VigraFalseType isBinaryAnalyser;
typedef VigraFalseType isTernaryAnalyser;
};
/** Functor to create uniformly distributed integer random numbers.
This functor encapsulates the appropriate functions of the given random number
<tt>Engine</tt> (usually <tt>RandomTT800</tt> or <tt>RandomMT19937</tt>)
in an STL-compatible interface.
<b>Traits defined:</b>
\verbatim FunctorTraits<UniformIntRandomFunctor<Engine> >::isInitializer \endverbatim
and
\verbatim FunctorTraits<UniformIntRandomFunctor<Engine> >::isUnaryFunctor \endverbatim
are true (<tt>VigraTrueType</tt>).
*/
template <class Engine = MersenneTwister>
class UniformIntRandomFunctor
{
UInt32 lower_, difference_, factor_;
Engine const & generator_;
bool useLowBits_;
public:
typedef UInt32 argument_type; ///< STL required functor argument type
typedef UInt32 result_type; ///< STL required functor result type
/** Create functor for uniform random integers in the range [0, 2<sup>32</sup>)
using the given engine.
That is, the generated numbers satisfy 0 <= i < 2<sup>32</sup>.
*/
explicit UniformIntRandomFunctor(Engine const & generator = Engine::global() )
: lower_(0), difference_(0xffffffff), factor_(1),
generator_(generator),
useLowBits_(true)
{}
/** Create functor for uniform random integers in the range [<tt>lower</tt>, <tt>upper</tt>]
using the given engine.
That is, the generated numbers satisfy <tt>lower</tt> <= i <= <tt>upper</tt>.
\a useLowBits should be set to <tt>false</tt> when the engine generates
random numbers whose low bits are significantly less random than the high
bits. This does not apply to <tt>RandomTT800</tt> and <tt>RandomMT19937</tt>,
but is necessary for simpler linear congruential generators.
*/
UniformIntRandomFunctor(UInt32 lower, UInt32 upper,
Engine const & generator = Engine::global(),
bool useLowBits = true)
: lower_(lower), difference_(upper-lower),
factor_(Engine::factorForUniformInt(difference_ + 1)),
generator_(generator),
useLowBits_(useLowBits)
{
vigra_precondition(lower < upper,
"UniformIntRandomFunctor(): lower bound must be smaller than upper bound.");
}
/** Return a random number as specified in the constructor.
*/
UInt32 operator()() const
{
if(difference_ == 0xffffffff) // lower_ is necessarily 0
return generator_();
else if(useLowBits_)
return generator_.uniformInt(difference_+1) + lower_;
else
{
UInt32 res = generator_() / factor_;
// Use rejection method to avoid quantization bias.
// On average, we will need two raw random numbers to generate one.
while(res > difference_)
res = generator_() / factor_;
return res + lower_;
}
}
/** Return a uniformly distributed integer random number in the range [0, <tt>beyond</tt>).
That is, 0 <= i < <tt>beyond</tt>. This is a required interface for
<tt>std::random_shuffle</tt>. It ignores the limits specified
in the constructor and the flag <tt>useLowBits</tt>.
*/
UInt32 operator()(UInt32 beyond) const
{
if(beyond < 2)
return 0;
return generator_.uniformInt(beyond);
}
};
template <class Engine>
class FunctorTraits<UniformIntRandomFunctor<Engine> >
{
public:
typedef UniformIntRandomFunctor<Engine> type;
typedef VigraTrueType isInitializer;
typedef VigraTrueType isUnaryFunctor;
typedef VigraFalseType isBinaryFunctor;
typedef VigraFalseType isTernaryFunctor;
typedef VigraFalseType isUnaryAnalyser;
typedef VigraFalseType isBinaryAnalyser;
typedef VigraFalseType isTernaryAnalyser;
};
/** Functor to create uniformly distributed double-precision random numbers.
This functor encapsulates the function <tt>uniform()</tt> of the given random number
<tt>Engine</tt> (usually <tt>RandomTT800</tt> or <tt>RandomMT19937</tt>)
in an STL-compatible interface.
<b>Traits defined:</b>
\verbatim FunctorTraits<UniformIntRandomFunctor<Engine> >::isInitializer \endverbatim
is true (<tt>VigraTrueType</tt>).
*/
template <class Engine = MersenneTwister>
class UniformRandomFunctor
{
double offset_, scale_;
Engine const & generator_;
public:
typedef double result_type; ///< STL required functor result type
/** Create functor for uniform random double-precision numbers in the range [0.0, 1.0]
using the given engine.
That is, the generated numbers satisfy 0.0 <= i <= 1.0.
*/
UniformRandomFunctor(Engine const & generator = Engine::global())
: offset_(0.0),
scale_(1.0),
generator_(generator)
{}
/** Create functor for uniform random double-precision numbers in the range [<tt>lower</tt>, <tt>upper</tt>]
using the given engine.
That is, the generated numbers satisfy <tt>lower</tt> <= i <= <tt>upper</tt>.
*/
UniformRandomFunctor(double lower, double upper,
Engine & generator = Engine::global())
: offset_(lower),
scale_(upper - lower),
generator_(generator)
{
vigra_precondition(lower < upper,
"UniformRandomFunctor(): lower bound must be smaller than upper bound.");
}
/** Return a random number as specified in the constructor.
*/
double operator()() const
{
return generator_.uniform() * scale_ + offset_;
}
};
template <class Engine>
class FunctorTraits<UniformRandomFunctor<Engine> >
{
public:
typedef UniformRandomFunctor<Engine> type;
typedef VigraTrueType isInitializer;
typedef VigraFalseType isUnaryFunctor;
typedef VigraFalseType isBinaryFunctor;
typedef VigraFalseType isTernaryFunctor;
typedef VigraFalseType isUnaryAnalyser;
typedef VigraFalseType isBinaryAnalyser;
typedef VigraFalseType isTernaryAnalyser;
};
/** Functor to create normal variate random numbers.
This functor encapsulates the function <tt>normal()</tt> of the given random number
<tt>Engine</tt> (usually <tt>RandomTT800</tt> or <tt>RandomMT19937</tt>)
in an STL-compatible interface.
<b>Traits defined:</b>
\verbatim FunctorTraits<UniformIntRandomFunctor<Engine> >::isInitializer \endverbatim
is true (<tt>VigraTrueType</tt>).
*/
template <class Engine = MersenneTwister>
class NormalRandomFunctor
{
double mean_, stddev_;
Engine const & generator_;
public:
typedef double result_type; ///< STL required functor result type
/** Create functor for standard normal random numbers
using the given engine.
That is, mean is 0.0 and standard deviation is 1.0.
*/
NormalRandomFunctor(Engine const & generator = Engine::global())
: mean_(0.0),
stddev_(1.0),
generator_(generator)
{}
/** Create functor for normal random numbers with given mean and standard deviation
using the given engine.
*/
NormalRandomFunctor(double mean, double stddev,
Engine & generator = Engine::global())
: mean_(mean),
stddev_(stddev),
generator_(generator)
{
vigra_precondition(stddev > 0.0,
"NormalRandomFunctor(): standard deviation must be positive.");
}
/** Return a random number as specified in the constructor.
*/
double operator()() const
{
return generator_.normal() * stddev_ + mean_;
}
};
template <class Engine>
class FunctorTraits<NormalRandomFunctor<Engine> >
{
public:
typedef UniformRandomFunctor<Engine> type;
typedef VigraTrueType isInitializer;
typedef VigraFalseType isUnaryFunctor;
typedef VigraFalseType isBinaryFunctor;
typedef VigraFalseType isTernaryFunctor;
typedef VigraFalseType isUnaryAnalyser;
typedef VigraFalseType isBinaryAnalyser;
typedef VigraFalseType isTernaryAnalyser;
};
//@}
} // namespace vigra
#endif // VIGRA_RANDOM_HXX
|