This file is indexed.

/usr/include/vigra/quadprog.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
/************************************************************************/
/*                                                                      */
/*                  Copyright 2008 by Ullrich Koethe                    */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR activeSet PARTICULAR PURPOSE AND  */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/

#ifndef VIGRA_QUADPROG_HXX
#define VIGRA_QUADPROG_HXX

#include <limits>
#include "mathutil.hxx"
#include "matrix.hxx"
#include "linear_solve.hxx"
#include "numerictraits.hxx"
#include "array_vector.hxx"

namespace vigra {

namespace detail {

template <class T, class C1, class C2, class C3>
bool quadprogAddConstraint(MultiArrayView<2, T, C1> & R, MultiArrayView<2, T, C2> & J, MultiArrayView<2, T, C3> & d, 
                           int activeConstraintCount, double& R_norm)
{
    typedef typename MultiArrayShape<2>::type Shape;
    int n=columnCount(J);
    linalg::detail::qrGivensStepImpl(0, subVector(d, activeConstraintCount, n),
                                     J.subarray(Shape(activeConstraintCount,0), Shape(n,n)));
    if (abs(d(activeConstraintCount,0)) <= NumericTraits<T>::epsilon() * R_norm) // problem degenerate
        return false;
    R_norm = std::max<T>(R_norm, abs(d(activeConstraintCount,0)));

    ++activeConstraintCount;   
    // add d as a new column to R
    columnVector(R, Shape(0, activeConstraintCount - 1), activeConstraintCount) = subVector(d, 0, activeConstraintCount);  
    return true;
}

template <class T, class C1, class C2, class C3>
void quadprogDeleteConstraint(MultiArrayView<2, T, C1> & R, MultiArrayView<2, T, C2> & J, MultiArrayView<2, T, C3> & u, 
                              int activeConstraintCount,  int constraintToBeRemoved)
{
    typedef typename MultiArrayShape<2>::type Shape;
    
    int newActiveConstraintCount = activeConstraintCount - 1;

    if(constraintToBeRemoved == newActiveConstraintCount)
        return;

    std::swap(u(constraintToBeRemoved,0), u(newActiveConstraintCount,0));
    columnVector(R, constraintToBeRemoved).swapData(columnVector(R, newActiveConstraintCount));
    linalg::detail::qrGivensStepImpl(0, R.subarray(Shape(constraintToBeRemoved, constraintToBeRemoved), 
                                                   Shape(newActiveConstraintCount,newActiveConstraintCount)),
                                        J.subarray(Shape(constraintToBeRemoved, 0), 
                                                   Shape(newActiveConstraintCount,newActiveConstraintCount)));
}

} // namespace detail

/** \addtogroup Optimization Optimization and Regression
 */
//@{
   /** Solve Quadratic Programming Problem.

     The quadraticProgramming() function implements the algorithm described in
     
     D. Goldfarb, A. Idnani: <i>"A numerically stable dual method for solving
                 strictly convex quadratic programs"</i>, Mathematical Programming 27:1-33, 1983. 
     
     for the solution of (convex) quadratic programming problems by means of a primal-dual method.
         
     <b>\#include</b> \<vigra/quadprog.hxx\> <br/>
     Namespaces: vigra

     <b>Declaration:</b>

     \code
     namespace vigra { 
         template <class T, class C1, class C2, class C3, class C4, class C5, class C6, class C7>
         T 
         quadraticProgramming(MultiArrayView<2, T, C1> const & GG, MultiArrayView<2, T, C2> const & g,  
                              MultiArrayView<2, T, C3> const & CE, MultiArrayView<2, T, C4> const & ce,  
                              MultiArrayView<2, T, C5> const & CI, MultiArrayView<2, T, C6> const & ci, 
                              MultiArrayView<2, T, C7> & x);
     }
     \endcode

     The problem must be specified in the form:

     \f{eqnarray*}
        \mbox{minimize } &\,& \frac{1}{2} \mbox{\bf x}'\,\mbox{\bf G}\, \mbox{\bf x} + \mbox{\bf g}'\,\mbox{\bf x} \\
        \mbox{subject to} &\,& \mbox{\bf C}_E\, \mbox{\bf x} = \mbox{\bf c}_e \\
         &\,& \mbox{\bf C}_I\,\mbox{\bf x} \ge \mbox{\bf c}_i
     \f}            
     Matrix <b>G</b> G must be symmetric positive definite, and matrix <b>C</b><sub>E</sub> must have full row rank. 
     Matrix and vector dimensions must be as follows:
     <ul>
     <li> <b>G</b>: [n * n], <b>g</b>: [n * 1]
     <li> <b>C</b><sub>E</sub>: [me * n], <b>c</b><sub>e</sub>: [me * 1]
     <li> <b>C</b><sub>I</sub>: [mi * n], <b>c</b><sub>i</sub>: [mi * 1]
     <li> <b>x</b>: [n * 1]
     </ul>
     
     The function writes the optimal solution into the vector \a x and returns the cost of this solution. 
     If the problem is infeasible, <tt>std::numeric_limits::infinity()</tt> is returned. In this case
     the value of vector \a x is undefined.
     
     <b>Usage:</b>
     
     Minimize <tt> f = 0.5 * x'*G*x + g'*x </tt> subject to <tt> -1 &lt;= x &lt;= 1</tt>. 
     The solution is <tt> x' = [1.0, 0.5, -1.0] </tt> with <tt> f = -22.625</tt>.
     \code
      double Gdata[] = {13.0, 12.0, -2.0,
                        12.0, 17.0,  6.0,
                        -2.0,  6.0, 12.0};

      double gdata[] = {-22.0, -14.5, 13.0};

      double CIdata[] = { 1.0,  0.0,  0.0,
                          0.0,  1.0,  0.0,
                          0.0,  0.0,  1.0,
                         -1.0,  0.0,  0.0,
                          0.0, -1.0,  0.0,
                          0.0,  0.0, -1.0};
                        
      double cidata[] = {-1.0, -1.0, -1.0, -1.0, -1.0, -1.0};

      Matrix<double> G(3,3, Gdata), 
                     g(3,1, gdata), 
                     CE,             // empty since there are no equality constraints
                     ce,             // likewise
                     CI(7,3, CIdata), 
                     ci(7,1, cidata), 
                     x(3,1);
                   
      double f = quadraticProgramming(G, g, CE, ce, CI, ci, x);
     \endcode
     
     This algorithm can also be used to solve non-negative least squares problems
     (see \ref nonnegativeLeastSquares() for an alternative algorithm). Consider the 
     problem to minimize <tt> f = (A*x - b)' * (A*x - b) </tt> subject to <tt> x &gt;= 0</tt>.
     Expanding the product in the objective gives <tt>f = x'*A'*A*x - 2*b'*A*x + b'*b</tt>.
     This is equivalent to the problem of minimizing <tt>fn = 0.5 * x'*G*x + g'*x</tt> with
     <tt>G = A'*A</tt> and <tt>g = -A'*b</tt> (the constant term <tt>b'*b</tt> has no
     effect on the optimal solution and can be dropped). The following code computes the 
     solution <tt>x' = [18.4493, 0, 4.50725]</tt>:
     \code
        double A_data[] = {
             1, -3,  2,
            -3, 10, -5,
             2, -5,  6
        };

        double b_data[] = {
             27, 
            -78, 
             64
        };

        Matrix<double> A(3, 3, A_data),
                       b(3, 1, b_data),
                       G =   transpose(A)*A,
                       g = -(transpose(A)*b),
                       CE,    // empty since there are no equality constraints
                       ce,    // likewise
                       CI = identityMatrix<double>(3), // constrain all elements of x
                       ci(3, 1, 0.0),                  // ... to be non-negative
                       x(3, 1);

        quadraticProgramming(G, g, CE, ce, CI, ci, x);
     \endcode
   */
doxygen_overloaded_function(template <...> unsigned int quadraticProgramming)

template <class T, class C1, class C2, class C3, class C4, class C5, class C6, class C7>
T 
quadraticProgramming(MultiArrayView<2, T, C1> const & G, MultiArrayView<2, T, C2> const & g,  
               MultiArrayView<2, T, C3> const & CE, MultiArrayView<2, T, C4> const & ce,  
               MultiArrayView<2, T, C5> const & CI, MultiArrayView<2, T, C6> const & ci, 
               MultiArrayView<2, T, C7> & x)
{
    using namespace linalg;
    typedef typename MultiArrayShape<2>::type Shape;
    
    int n  = rowCount(g),
        me = rowCount(ce),
        mi = rowCount(ci),
        constraintCount = me + mi;
        
    vigra_precondition(columnCount(G) == n && rowCount(G) == n,
        "quadraticProgramming(): Matrix shape mismatch between G and g.");
    vigra_precondition(rowCount(x) == n,
        "quadraticProgramming(): Output vector x has illegal shape.");
    vigra_precondition((me > 0 && columnCount(CE) == n && rowCount(CE) == me) || 
                       (me == 0 && columnCount(CE) == 0),
        "quadraticProgramming(): Matrix CE has illegal shape.");
    vigra_precondition((mi > 0 && columnCount(CI) == n && rowCount(CI) == mi) || 
                       (mi == 0 && columnCount(CI) == 0),
        "quadraticProgramming(): Matrix CI has illegal shape.");

    Matrix<T> J = identityMatrix<T>(n);
    {
        Matrix<T> L(G.shape());
        choleskyDecomposition(G, L);
        // find unconstrained minimizer of the quadratic form  0.5 * x G x + g' x
        choleskySolve(L, -g, x);
        // compute the inverse of the factorized matrix G^-1, this is the initial value for J
        linearSolveLowerTriangular(L, J, J);
    }
    // current solution value
    T f_value = 0.5 * dot(g, x);
    
    T epsilonZ   = NumericTraits<T>::epsilon() * sq(J.norm(0)),
      inf        = std::numeric_limits<T>::infinity();
    
    Matrix<T> R(n, n), r(constraintCount, 1), u(constraintCount,1);
    T R_norm = NumericTraits<T>::one();
    
    // incorporate equality constraints
    for (int i=0; i < me; ++i)
    {
        MultiArrayView<2, T, C3> np = rowVector(CE, i);
        Matrix<T> d = J*transpose(np);
        Matrix<T> z = transpose(J).subarray(Shape(0, i), Shape(n,n))*subVector(d, i, n);
        linearSolveUpperTriangular(R.subarray(Shape(0, 0), Shape(i,i)), 
                                   subVector(d, 0, i), 
                                   subVector(r, 0, i));
        // compute step in primal space so that the constraint becomes satisfied
        T step = (squaredNorm(z) <= epsilonZ) // i.e. z == 0
                     ? 0.0 
                     : (-dot(np, x) + ce(i,0)) / dot(z, np);
    
        x += step * z;    
        u(i,0) = step;
        subVector(u, 0, i) -= step * subVector(r, 0, i);
        
        f_value += 0.5 * sq(step) * dot(z, np);
    
        vigra_precondition(vigra::detail::quadprogAddConstraint(R, J, d, i, R_norm),
            "quadraticProgramming(): Equality constraints are linearly dependent.");
    }
    int activeConstraintCount = me;
  
    // determine optimum solution and corresponding active inequality constraints
    ArrayVector<int> activeSet(mi);
    for (int i = 0; i < mi; ++i)
        activeSet[i] = i;

    int constraintToBeAdded = 0;
    T ss = 0.0;
    for (int i = activeConstraintCount-me; i < mi; ++i)
    {
        T s = dot(rowVector(CI, activeSet[i]), x) - ci(activeSet[i], 0);
        if (s < ss)
        {
            ss = s;
            constraintToBeAdded = i;
        }
    }

    int iter = 0, maxIter = 10*mi;    
    while(iter++ < maxIter)
    {        
        if (ss >= 0.0)       // all constraints are satisfied
            return f_value;  // => solved!

        // determine step direction in the primal space (through J, see the paper)
        MultiArrayView<2, T, C5> np = rowVector(CI, activeSet[constraintToBeAdded]);
        Matrix<T> d = J*transpose(np);
        Matrix<T> z = transpose(J).subarray(Shape(0, activeConstraintCount), Shape(n,n))*subVector(d, activeConstraintCount, n);
        
        // compute negative of the step direction in the dual space
        linearSolveUpperTriangular(R.subarray(Shape(0, 0), Shape(activeConstraintCount,activeConstraintCount)), 
                                   subVector(d, 0, activeConstraintCount), 
                                   subVector(r, 0, activeConstraintCount));

        // determine minimum step length in primal space such that activeSet[constraintToBeAdded] becomes feasible
        T primalStep = (squaredNorm(z) <= epsilonZ) // i.e. z == 0
                          ? inf
                          : -ss / dot(z, np);
      
        // determine maximum step length in dual space that doesn't violate dual feasibility
        // and the corresponding index
        T dualStep = inf; 
        int constraintToBeRemoved = 0;
        for (int k = me; k < activeConstraintCount; ++k)
        {
            if (r(k,0) > 0.0)
            {
                if (u(k,0) / r(k,0) < dualStep)
                {
                    dualStep = u(k,0) / r(k,0);
                    constraintToBeRemoved = k;
                }
            }
        }
        
        // the step is chosen as the minimum of dualStep and primalStep
        T step = std::min(dualStep, primalStep);
      
        // take step and update matrices
      
        if (step == inf)
        {
            // case (i): no step in primal or dual space possible
            return inf; // QPP is infeasible 
        }
        if (primalStep == inf)
        {
            // case (ii): step in dual space
            subVector(u, 0, activeConstraintCount) -= step * subVector(r, 0, activeConstraintCount);
            vigra::detail::quadprogDeleteConstraint(R, J, u, activeConstraintCount, constraintToBeRemoved);
            --activeConstraintCount;
            std::swap(activeSet[constraintToBeRemoved-me], activeSet[activeConstraintCount-me]);
            continue;
        }
      
        // case (iii): step in primal and dual space      
        x += step * z;
        // update the solution value
        f_value += 0.5 * sq(step) * dot(z, np);
        // u = [u 1]' + step * [-r 1]
        subVector(u, 0, activeConstraintCount) -= step * subVector(r, 0, activeConstraintCount);
        u(activeConstraintCount,0) = step;
      
        if (step == primalStep)
        {
            // add constraintToBeAdded to the active set
            vigra::detail::quadprogAddConstraint(R, J, d, activeConstraintCount, R_norm);
            std::swap(activeSet[constraintToBeAdded], activeSet[activeConstraintCount-me]);
            ++activeConstraintCount;
        }
        else
        {
            // drop constraintToBeRemoved from the active set
            vigra::detail::quadprogDeleteConstraint(R, J, u, activeConstraintCount, constraintToBeRemoved);
            --activeConstraintCount;
            std::swap(activeSet[constraintToBeRemoved-me], activeSet[activeConstraintCount-me]);
        }
        
        // update values of inactive inequality constraints
        ss = 0.0;
        for (int i = activeConstraintCount-me; i < mi; ++i)
        {
            // compute CI*x - ci with appropriate row permutation
            T s = dot(rowVector(CI, activeSet[i]), x) - ci(activeSet[i], 0);
            if (s < ss)
            {
                ss = s;
                constraintToBeAdded = i;
            }
        }
    }
    return inf; // too many iterations
}

//@}

} // namespace vigra

#endif