This file is indexed.

/usr/include/vigra/inspectimage.hxx is in libvigraimpex-dev 1.10.0+git20160211.167be93+dfsg-5ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
/************************************************************************/
/*                                                                      */
/*               Copyright 1998-2002 by Ullrich Koethe                  */
/*                                                                      */
/*    This file is part of the VIGRA computer vision library.           */
/*    The VIGRA Website is                                              */
/*        http://hci.iwr.uni-heidelberg.de/vigra/                       */
/*    Please direct questions, bug reports, and contributions to        */
/*        ullrich.koethe@iwr.uni-heidelberg.de    or                    */
/*        vigra@informatik.uni-hamburg.de                               */
/*                                                                      */
/*    Permission is hereby granted, free of charge, to any person       */
/*    obtaining a copy of this software and associated documentation    */
/*    files (the "Software"), to deal in the Software without           */
/*    restriction, including without limitation the rights to use,      */
/*    copy, modify, merge, publish, distribute, sublicense, and/or      */
/*    sell copies of the Software, and to permit persons to whom the    */
/*    Software is furnished to do so, subject to the following          */
/*    conditions:                                                       */
/*                                                                      */
/*    The above copyright notice and this permission notice shall be    */
/*    included in all copies or substantial portions of the             */
/*    Software.                                                         */
/*                                                                      */
/*    THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND    */
/*    EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES   */
/*    OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND          */
/*    NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT       */
/*    HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,      */
/*    WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING      */
/*    FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR     */
/*    OTHER DEALINGS IN THE SOFTWARE.                                   */
/*                                                                      */
/************************************************************************/


#ifndef VIGRA_INSPECTIMAGE_HXX
#define VIGRA_INSPECTIMAGE_HXX

#include <vector>
#include <algorithm>
#include "utilities.hxx"
#include "numerictraits.hxx"
#include "iteratortraits.hxx"
#include "functortraits.hxx"
#include "rgbvalue.hxx"
#include "inspector_passes.hxx"
#include "multi_shape.hxx"

namespace vigra {

/** \addtogroup InspectAlgo Algorithms to Inspect Images

    Collect information and statistics over all or selected pixels.
*/
//@{

/********************************************************/
/*                                                      */
/*                      inspectLine                     */
/*                                                      */
/********************************************************/

template <class SrcIterator, class SrcAccessor, class Functor>
void
inspectLine(SrcIterator s,
            SrcIterator send, SrcAccessor src,
            Functor & f)
{
    for(; s != send; ++s)
        f(src(s));
}

template <class SrcIterator, class SrcAccessor,
          class MaskIterator, class MaskAccessor,
          class Functor>
void
inspectLineIf(SrcIterator s,
              SrcIterator send, SrcAccessor src,
              MaskIterator m, MaskAccessor mask,
              Functor & f)
{
    for(; s != send; ++s, ++m)
        if(mask(m))
            f(src(s));
}

template <class SrcIterator1, class SrcAccessor1,
          class SrcIterator2, class SrcAccessor2,
          class Functor>
void
inspectTwoLines(SrcIterator1 s1,
                SrcIterator1 s1end, SrcAccessor1 src1,
                SrcIterator2 s2, SrcAccessor2 src2,
                Functor & f)
{
    for(; s1 != s1end; ++s1, ++s2)
        f(src1(s1), src2(s2));
}

template <class SrcIterator1, class SrcAccessor1,
          class SrcIterator2, class SrcAccessor2,
          class MaskIterator, class MaskAccessor,
          class Functor>
void
inspectTwoLinesIf(SrcIterator1 s1,
                  SrcIterator1 s1end, SrcAccessor1 src1,
                  SrcIterator2 s2, SrcAccessor2 src2,
                  MaskIterator m, MaskAccessor mask,
                  Functor & f)
{
    for(; s1 != s1end; ++s1, ++s2, ++m)
        if(mask(m))
            f(src1(s1), src2(s2));
}

/********************************************************/
/*                                                      */
/*                        inspectImage                  */
/*                                                      */
/********************************************************/

/** \brief Apply read-only functor to every pixel in the image.

    This function can be used to collect statistics of the image etc.
    The results must be stored in the functor, which serves as a return value
    (and is therefore passed by reference).
    
    For many common statistics, the use of \ref vigra::acc::extractFeatures() in combination with 
    \ref FeatureAccumulators is more convenient.

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T, class S, class Functor>
        void
        inspectImage(MultiArrayView<2, T, S> const & img,
                     Functor & f);
    }
    \endcode

    \deprecatedAPI{inspectImage}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class ImageIterator, class Accessor, class Functor>
        void
        inspectImage(ImageIterator upperleft, ImageIterator lowerright, Accessor a, 
                     Functor & f)
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class ImageIterator, class Accessor, class Functor>
        void
        inspectImage(triple<ImageIterator, ImageIterator, Accessor> img,
                     Functor & f)
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    MultiArray<2, unsigned char> img(width, height);
    ... // fill img
    
    // init functor
    FindMinMax<unsined char> minmax;

    inspectImage(img, minmax);

    cout << "Min: " << minmax.min << " Max: " << minmax.max;
    \endcode

    \deprecatedUsage{inspectImage}
    \code
    // init functor
    vigra::BImage img;

    vigra::FindMinMax<vigra::BImage::PixelType> minmax;

    vigra::inspectImage(srcImageRange(img), minmax);

    cout << "Min: " << minmax.min << " Max: " << minmax.max;
    \endcode
    <b> Required Interface:</b>
    \code
    ConstImageIterator upperleft, lowerright;
    ConstImageIterator::row_iterator ix = upperleft.rowIterator();

    Accessor accessor;
    Functor functor;

    functor(accessor(ix));         // return not used
    \endcode
    \deprecatedEnd
    
    \see InspectFunctor, FeatureAccumulators
*/
doxygen_overloaded_function(template <...> void inspectImage)

template <class ImageIterator, class Accessor>
struct inspectImage_binder
{
    ImageIterator upperleft;
    ImageIterator lowerright;
    Accessor a;

    inspectImage_binder(ImageIterator ul, ImageIterator lr, Accessor ac)
        : upperleft(ul), lowerright(lr), a(ac) {}
    template <class Functor>
    void operator()(Functor & f)
    {
        int w = lowerright.x - upperleft.x;

        for (ImageIterator t = upperleft; t.y < lowerright.y; ++t.y)
        {
            inspectLine(t.rowIterator(), t.rowIterator() + w, a, f);
        }
    }
};

template <class ImageIterator, class Accessor, class Functor>
void
inspectImage(ImageIterator upperleft, ImageIterator lowerright,
         Accessor a, Functor & f)
{
    inspectImage_binder<ImageIterator, Accessor> g(upperleft, lowerright, a);
    detail::extra_passes_select(g, f);
}

template <class ImageIterator, class Accessor, class Functor>
inline void
inspectImage(triple<ImageIterator, ImageIterator, Accessor> img,
             Functor & f)
{
    inspectImage(img.first, img.second, img.third, f);
}

template <class T, class S, class Functor>
inline void
inspectImage(MultiArrayView<2, T, S> const & img,
             Functor & f)
{
    inspectImage(srcImageRange(img), f);
}

namespace functor
{
    template <class T> class UnaryAnalyser;
}

template <class ImageIterator, class Accessor, class Functor>
inline
void
inspectImage(ImageIterator upperleft, ImageIterator lowerright,
         Accessor a, functor::UnaryAnalyser<Functor> const & f)
{
    inspectImage(upperleft, lowerright, a,
                 const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class ImageIterator, class Accessor, class Functor>
inline void
inspectImage(triple<ImageIterator, ImageIterator, Accessor> img,
             functor::UnaryAnalyser<Functor> const & f)
{
    inspectImage(img.first, img.second, img.third,
                 const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class T, class S, class Functor>
inline void
inspectImage(MultiArrayView<2, T, S> const & img,
             functor::UnaryAnalyser<Functor> const & f)
{
    inspectImage(srcImageRange(img),
                 const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

/********************************************************/
/*                                                      */
/*                      inspectImageIf                  */
/*                                                      */
/********************************************************/

/** \brief Apply read-only functor to every pixel in the ROI.

    This function can be used to collect statistics of the ROI etc.
    The functor is called whenever the return value of the mask's
    accessor is not zero.
    The results must be stored in the functor, which serves as a return
    value (and is therefore passed by reference.

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T, class S,
                  class TM, class SM, class Functor>
        void
        inspectImageIf(MultiArrayView<2, T, S> const & img,
                       MultiArrayView<2, TM, SM> const & mask,
                       Functor & f);
    }
    \endcode

    \deprecatedAPI{inspectImageIf}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class ImageIterator, class Accessor,
                  class MaskImageIterator, class MaskAccessor, class Functor>
        void
        inspectImageIf(ImageIterator upperleft, ImageIterator lowerright,
               MaskImageIterator mask_upperleft, MaskAccessor ma,
               Functor & f)
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class ImageIterator, class Accessor,
              class MaskImageIterator, class MaskAccessor, class Functor>
        void
        inspectImageIf(triple<ImageIterator, ImageIterator, Accessor> img,
               pair<MaskImageIterator, MaskAccessor> mask,
               Functor & f)
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    MultiArray<2, unsigned char> img(100, 100),
                                 mask(100, 100);
    ... // fill img and mask
    
    // init functor
    FindMinMax<unsigned char> minmax;

    inspectImageIf(img, mask, minmax);

    cout << "Min: " << minmax.min << " Max: " << minmax.max;
    \endcode

    \deprecatedUsage{inspectImageIf}
    \code
    vigra::BImage img(100, 100);
    vigra::BImage mask(100, 100);

    // init functor
    vigra::FindMinMax<vigra::BImage::PixelType> minmax;

    vigra::inspectImageIf(srcImageRange(img),
                          maskImage(mask), minmax);

    cout << "Min: " << minmax.min << " Max: " << minmax.max;
    \endcode
    <b> Required Interface:</b>
    \code
    ConstImageIterator upperleft, lowerright;
    MaskImageIterator mask_upperleft;
    ConstImageIterator::row_iterator ix = upperleft.rowIterator();
    MaskImageIterator::row_iterator mx = mask_upperleft.rowIterator();

    Accessor accessor;
    MaskAccessor mask_accessor;

    Functor functor;

    if(mask_accessor(mx)) functor(accessor(ix));
    \endcode
    \deprecatedEnd
    
    \see InspectFunctor, FeatureAccumulators
*/
doxygen_overloaded_function(template <...> void inspectImageIf)

template <class ImageIterator, class Accessor,
      class MaskImageIterator, class MaskAccessor>
struct inspectImageIf_binder
{
    ImageIterator upperleft;
    ImageIterator lowerright;
    Accessor a;
    MaskImageIterator mask_upperleft;
    MaskAccessor ma;

    inspectImageIf_binder(ImageIterator ul, ImageIterator lr, Accessor ac,
                        MaskImageIterator m_ul, MaskAccessor m_ac)
        : upperleft(ul), lowerright(lr), a(ac), mask_upperleft(m_ul), ma(m_ac)
    {}
    template <class Functor>
    void operator()(Functor & f)
    {
        int w = lowerright.x - upperleft.x;

        MaskImageIterator mt = mask_upperleft;
        for (ImageIterator t = upperleft; t.y < lowerright.y; ++t.y, ++mt.y)
        {
            inspectLineIf(t.rowIterator(),
                          t.rowIterator() + w, a,
                          mt.rowIterator(), ma, f);
        }
    }
};

template <class ImageIterator, class Accessor,
      class MaskImageIterator, class MaskAccessor, class Functor>
void
inspectImageIf(ImageIterator upperleft,
               ImageIterator lowerright, Accessor a,
           MaskImageIterator mask_upperleft, MaskAccessor ma,
           Functor & f)
{
    inspectImageIf_binder<ImageIterator, Accessor, MaskImageIterator,
                                                                   MaskAccessor>
        g(upperleft, lowerright, a, mask_upperleft, ma);
    detail::extra_passes_select(g, f);
}

template <class ImageIterator, class Accessor,
      class MaskImageIterator, class MaskAccessor, class Functor>
inline void
inspectImageIf(ImageIterator upperleft,
               ImageIterator lowerright, Accessor a,
               MaskImageIterator mask_upperleft, MaskAccessor ma,
               functor::UnaryAnalyser<Functor> const & f)
{
    inspectImageIf(upperleft, lowerright, a,
                   mask_upperleft, ma, const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class ImageIterator, class Accessor,
          class MaskImageIterator, class MaskAccessor, class Functor>
inline void
inspectImageIf(triple<ImageIterator, ImageIterator, Accessor> img,
               pair<MaskImageIterator, MaskAccessor> mask,
               Functor & f)
{
    inspectImageIf(img.first, img.second, img.third,
                   mask.first, mask.second, f);
}

template <class ImageIterator, class Accessor,
          class MaskImageIterator, class MaskAccessor, class Functor>
inline void
inspectImageIf(triple<ImageIterator, ImageIterator, Accessor> img,
               pair<MaskImageIterator, MaskAccessor> mask,
               functor::UnaryAnalyser<Functor> const & f)
{
    inspectImageIf(img.first, img.second, img.third,
                   mask.first, mask.second, const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class T, class S,
          class TM, class SM, class Functor>
inline void
inspectImageIf(MultiArrayView<2, T, S> const & img,
               MultiArrayView<2, TM, SM> const & mask,
               Functor & f)
{
    vigra_precondition(img.shape() == mask.shape(),
        "inspectImageIf(): shape mismatch between input and output.");
    inspectImageIf(srcImageRange(img),
                   maskImage(mask), f);
}

template <class T, class S,
          class TM, class SM, class Functor>
inline void
inspectImageIf(MultiArrayView<2, T, S> const & img,
               MultiArrayView<2, TM, SM> const & mask,
               functor::UnaryAnalyser<Functor> const & f)
{
    inspectImageIf(srcImageRange(img),
                   maskImage(mask), const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

/********************************************************/
/*                                                      */
/*                  inspectTwoImages                    */
/*                                                      */
/********************************************************/

/** \brief Apply read-only functor to every pixel of both images.

    This function can be used to collect statistics for each region of a
    labeled image, especially in conjunction with
    the \ref ArrayOfRegionStatistics functor. The results must be
    stored in the functor which serves as a return value.
    
    Note: For many common statistics, the use of \ref vigra::acc::extractFeatures() in combination 
    with \ref FeatureAccumulators is more convenient.

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T1, class S1,
                  class T2, class S2,
                  class Functor>
        void
        inspectTwoImages(MultiArrayView<2, T1, S1> const & img1,
                         MultiArrayView<2, T2, S2> const & img2,
                         Functor & f);
    }
    \endcode

    \deprecatedAPI{inspectTwoImages}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class ImageIterator1, class Accessor1,
              class ImageIterator2, class Accessor2,
              class Functor>
        void
        inspectTwoImages(ImageIterator1 upperleft1, ImageIterator1 lowerright1, Accessor1 a1,
                 ImageIterator2 upperleft2, Accessor2 a2,
                 Functor & f)
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class ImageIterator1, class Accessor1,
              class ImageIterator2, class Accessor2,
              class Functor>
        void
        inspectTwoImages(triple<ImageIterator1, ImageIterator1, Accessor1> img1,
                         pair<ImageIterator2, Accessor2> img2,
                 Functor & f)
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    MultiArray<2, unsigned char> image1(width, height), image2(width, height);

    SomeStatisticsFunctor stats(...);     // init functor

    inspectTwoImages(image1, image2, stats);
    \endcode

    \deprecatedUsage{inspectTwoImages}
    \code
    vigra::BImage image1;
    vigra::BImage image2;

    SomeStatisticsFunctor stats(...);     // init functor

    vigra::inspectTwoImages(srcImageRange(image1), srcImage(image2),
                            stats);
    \endcode
    <b> Required Interface:</b>
    \code
    ImageIterator1 upperleft1, lowerright1;
    ImageIterator2 upperleft2;
    ImageIterator1::row_iterator ix1 = upperleft1.rowIterator();
    ImageIterator2::row_iterator ix2 = upperleft2.rowIterator();

    Accessor1 accessor1;
    Accessor2 accessor2;

    Functor functor;
    functor(accessor1(ix1), accessor2(ix2));  // return not used
    \endcode
    \deprecatedEnd
    
    \see InspectFunctor, FeatureAccumulators
*/
doxygen_overloaded_function(template <...> void inspectTwoImages)

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2>
struct inspectTwoImages_binder
{
    ImageIterator1 upperleft1;
    ImageIterator1 lowerright1;
    Accessor1      a1;
    ImageIterator2 upperleft2;
    Accessor2      a2;
    inspectTwoImages_binder(ImageIterator1 u1, ImageIterator1 l1, Accessor1 a1_,
                        ImageIterator2 u2, Accessor2 a2_)
        : upperleft1(u1), lowerright1(l1), a1(a1_), upperleft2(u2), a2(a2_) {}
    template <class Functor>
    void operator()(Functor & f)
    {
        int w = lowerright1.x - upperleft1.x;

        ImageIterator1 t1 = upperleft1;
        ImageIterator2 t2 = upperleft2;
        for (; t1.y < lowerright1.y; ++t1.y, ++t2.y)
        {
            inspectTwoLines(t1.rowIterator(),
                            t1.rowIterator() + w, a1,
                            t2.rowIterator(), a2, f);
        }
    }
};

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class Functor>
void
inspectTwoImages(ImageIterator1 upperleft1, ImageIterator1 lowerright1,
                 Accessor1 a1,
                 ImageIterator2 upperleft2, Accessor2 a2,
                 Functor & f)
{
    inspectTwoImages_binder<ImageIterator1, Accessor1,
                            ImageIterator2, Accessor2>
        g(upperleft1, lowerright1, a1, upperleft2, a2);
    detail::extra_passes_select(g, f);
}

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class Functor>
inline void
inspectTwoImages(ImageIterator1 upperleft1, ImageIterator1 lowerright1, Accessor1 a1,
                 ImageIterator2 upperleft2, Accessor2 a2,
                 functor::UnaryAnalyser<Functor> const & f)
{
    inspectTwoImages(upperleft1, lowerright1, a1,
                     upperleft2, a2, const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class Functor>
inline void
inspectTwoImages(triple<ImageIterator1, ImageIterator1, Accessor1> img1,
                 pair<ImageIterator2, Accessor2> img2,
                 Functor & f)
{
    inspectTwoImages(img1.first, img1.second, img1.third,
                     img2.first, img2.second, f);
}

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class Functor>
inline void
inspectTwoImages(triple<ImageIterator1, ImageIterator1, Accessor1> img1,
                 pair<ImageIterator2, Accessor2> img2,
                 functor::UnaryAnalyser<Functor> const & f)
{
    inspectTwoImages(img1.first, img1.second, img1.third,
                     img2.first, img2.second, const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class T1, class S1,
          class T2, class S2,
          class Functor>
inline void
inspectTwoImages(MultiArrayView<2, T1, S1> const & img1,
                 MultiArrayView<2, T2, S2> const & img2,
                 Functor & f)
{
    vigra_precondition(img1.shape() == img2.shape(),
        "inspectTwoImages(): shape mismatch between input and output.");
    inspectTwoImages(srcImageRange(img1),
                     srcImage(img2),
                     f);
}


template <class T1, class S1,
          class T2, class S2,
          class Functor>
inline void
inspectTwoImages(MultiArrayView<2, T1, S1> const & img1,
                 MultiArrayView<2, T2, S2> const & img2,
                 functor::UnaryAnalyser<Functor> const & f)
{
    vigra_precondition(img1.shape() == img2.shape(),
        "inspectTwoImages(): shape mismatch between input and output.");
    inspectTwoImages(srcImageRange(img1),
                     srcImage(img2), const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

/********************************************************/
/*                                                      */
/*                inspectTwoImagesIf                    */
/*                                                      */
/********************************************************/

/** \brief Apply read-only functor to those pixels of both images where
    the mask image is non-zero.

    This function can be used to collect statistics for selected regions of a
    labeled image, especially in conjunction with
    the \ref ArrayOfRegionStatistics functor. The results must be
    stored in the functor which serves as a return value.

    <b> Declarations:</b>

    pass 2D array views:
    \code
    namespace vigra {
        template <class T1, class S1,
                  class T2, class S2,
                  class TM, class SM,
                  class Functor>
        void
        inspectTwoImagesIf(MultiArrayView<2, T1, S1> const & img1,
                           MultiArrayView<2, T2, S2> const & img2,
                           MultiArrayView<2, TM, SM> const & mask,
                           Functor & f);
    }
    \endcode

    \deprecatedAPI{inspectTwoImagesIf}
    pass \ref ImageIterators and \ref DataAccessors :
    \code
    namespace vigra {
        template <class ImageIterator1, class Accessor1,
                  class ImageIterator2, class Accessor2,
                  class MaskImageIterator, class MaskAccessor,
                  class Functor>
        void
        inspectTwoImagesIf(ImageIterator1 upperleft1, ImageIterator1 lowerright1, Accessor1 a1,
                         ImageIterator2 upperleft2, Accessor2 a2,
                         MaskImageIterator mupperleft, MaskAccessor mask,
                         Functor & f)
    }
    \endcode
    use argument objects in conjunction with \ref ArgumentObjectFactories :
    \code
    namespace vigra {
        template <class ImageIterator1, class Accessor1,
                  class ImageIterator2, class Accessor2,
                  class MaskImageIterator, class MaskAccessor,
                  class Functor>
        void
        inspectTwoImagesIf(triple<ImageIterator1, ImageIterator1, Accessor1> img1,
                 pair<ImageIterator2, Accessor2> img2,
                 pair<MaskImageIterator, MaskAccessor> mimg,
                 Functor & f)
    }
    \endcode
    \deprecatedEnd

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    MultiArray<2, unsigned char> image1(width, height), image2(width, height),
                                 maskimage(width, height);

    SomeStatisticsFunctor stats(...);     // init functor

    inspectTwoImagesIf(image1, image2, maskimage, region_stats);
    \endcode

    \deprecatedUsage{inspectTwoImagesIf}
    \code
    vigra::BImage image1;
    vigra::BImage image2;
    vigra::BImage maskimage;

    SomeStatisticsFunctor stats(...);     // init functor

    vigra::inspectTwoImagesIf(srcImageRange(image1), srcImage(image2),
                              srcImage(maskimage), region_stats);

    \endcode
    <b> Required Interface:</b>
    \code
    ImageIterator1 upperleft1, lowerright1;
    ImageIterator2 upperleft2;
    MaskImageIterator upperleftm;
    ImageIterator1::row_iterator ix1 = upperleft1.rowIterator();
    ImageIterator2::row_iterator ix2 = upperleft2.rowIterator();
    MaskImageIterator::row_iterator mx = mupperleft.rowIterator();

    Accessor1 accessor1;
    Accessor2 accessor2;
    MaskAccessor mask;

    Functor functor;
    if(mask(mx))
        functor(accessor1(ix1), accessor2(ix2));
    \endcode
    \deprecatedEnd
    
    \see InspectFunctor, FeatureAccumulators
*/
doxygen_overloaded_function(template <...> void inspectTwoImagesIf)

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class MaskImageIterator, class MaskAccessor>
struct inspectTwoImagesIf_binder
{
    ImageIterator1    upperleft1;
    ImageIterator1    lowerright1;
    Accessor1         a1;
    ImageIterator2    upperleft2;
    Accessor2         a2;
    MaskImageIterator mupperleft;
    MaskAccessor      mask;
    inspectTwoImagesIf_binder(ImageIterator1 u1, ImageIterator1 l1,
                              Accessor1 a1_, ImageIterator2 u2, Accessor2 a2_,
                              MaskImageIterator mu, MaskAccessor ma)
        : upperleft1(u1), lowerright1(l1), a1(a1_), upperleft2(u2), a2(a2_),
          mupperleft(mu), mask(ma) {}
    template <class Functor>
    void operator()(Functor & f)
    {
        int w = lowerright1.x - upperleft1.x;

        ImageIterator1 t1 = upperleft1;
        ImageIterator2 t2 = upperleft2;
        MaskImageIterator mu = mupperleft;
        for(; t1.y < lowerright1.y; ++t1.y, ++t2.y, ++mu.y)
        {
            inspectTwoLinesIf(t1.rowIterator(),
                              t1.rowIterator() + w, a1,
                              t2.rowIterator(), a2,
                              mu.rowIterator(), mask, f);
        }
    }
};

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class MaskImageIterator, class MaskAccessor,
          class Functor>
void
inspectTwoImagesIf(ImageIterator1 upperleft1, ImageIterator1 lowerright1,
                   Accessor1 a1,
                   ImageIterator2 upperleft2, Accessor2 a2,
                   MaskImageIterator mupperleft, MaskAccessor mask,
                   Functor & f)
{
    inspectTwoImagesIf_binder<ImageIterator1, Accessor1,
                              ImageIterator2, Accessor2,
                              MaskImageIterator, MaskAccessor>
        g(upperleft1, lowerright1, a1, upperleft2, a2, mupperleft, mask);
    detail::extra_passes_select(g, f);
}

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class MaskImageIterator, class MaskAccessor,
          class Functor>
inline void
inspectTwoImagesIf(ImageIterator1 upperleft1, ImageIterator1 lowerright1, Accessor1 a1,
                 ImageIterator2 upperleft2, Accessor2 a2,
                 MaskImageIterator mupperleft, MaskAccessor mask,
                 functor::UnaryAnalyser<Functor> const & f)
{
    inspectTwoImagesIf(upperleft1, lowerright1, a1,
                       upperleft2, a2,
                       mupperleft, mask,
                       const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class MaskImageIterator, class MaskAccessor,
          class Functor>
inline void
inspectTwoImagesIf(triple<ImageIterator1, ImageIterator1, Accessor1> img1,
                   pair<ImageIterator2, Accessor2> img2,
                   pair<MaskImageIterator, MaskAccessor> m,
                   Functor & f)
{
    inspectTwoImagesIf(img1.first, img1.second, img1.third,
                       img2.first, img2.second,
                       m.first, m.second,
                       f);
}

template <class ImageIterator1, class Accessor1,
          class ImageIterator2, class Accessor2,
          class MaskImageIterator, class MaskAccessor,
          class Functor>
inline void
inspectTwoImagesIf(triple<ImageIterator1, ImageIterator1, Accessor1> img1,
                   pair<ImageIterator2, Accessor2> img2,
                   pair<MaskImageIterator, MaskAccessor> m,
                   functor::UnaryAnalyser<Functor> const & f)
{
    inspectTwoImagesIf(img1.first, img1.second, img1.third,
                       img2.first, img2.second,
                       m.first, m.second,
                       const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

template <class T1, class S1,
          class T2, class S2,
          class TM, class SM,
          class Functor>
inline void
inspectTwoImagesIf(MultiArrayView<2, T1, S1> const & img1,
                   MultiArrayView<2, T2, S2> const & img2,
                   MultiArrayView<2, TM, SM> const & mask,
                   Functor & f)
{
    vigra_precondition(img1.shape() == img2.shape() && img1.shape() == mask.shape(),
        "inspectTwoImagesIf(): shape mismatch between input and output.");
    inspectTwoImagesIf(srcImageRange(img1),
                       srcImage(img2),
                       maskImage(mask),
                       f);
}

template <class T1, class S1,
          class T2, class S2,
          class TM, class SM,
          class Functor>
inline void
inspectTwoImagesIf(MultiArrayView<2, T1, S1> const & img1,
                   MultiArrayView<2, T2, S2> const & img2,
                   MultiArrayView<2, TM, SM> const & mask,
                   functor::UnaryAnalyser<Functor> const & f)
{
    vigra_precondition(img1.shape() == img2.shape() && img1.shape() == mask.shape(),
        "inspectTwoImagesIf(): shape mismatch between input and output.");
    inspectTwoImagesIf(srcImageRange(img1),
                       srcImage(img2),
                       maskImage(mask),
                       const_cast<functor::UnaryAnalyser<Functor> &>(f));
}

//@}

/** \addtogroup InspectFunctor Functors To Inspect Images
    Functors which report image statistics
*/
//@{

/********************************************************/
/*                                                      */
/*                     FindMinMax                       */
/*                                                      */
/********************************************************/

/** \brief Find the minimum and maximum pixel value in an image or ROI.

    In addition the size of the ROI is calculated.
    These functors can also be used in conjunction with
    \ref ArrayOfRegionStatistics to find the extremes of all regions in
    a labeled image.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> is true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;

    vigra::FindMinMax<vigra::BImage::PixelType> minmax;   // init functor

    vigra::inspectImage(srcImageRange(img), minmax);

    cout << "Min: " << minmax.min << " Max: " << minmax.max;

    \endcode

    <b> Required Interface:</b>

    \code
    VALUETYPE v1, v2(v1);

    v1 < v2;
    v1 = v2;
    \endcode

*/
template <class VALUETYPE>
class FindMinMax
{
   public:

        /** the functor's argument type
        */
    typedef VALUETYPE argument_type;

        /** the functor's result type
        */
    typedef VALUETYPE result_type;

        /** \deprecated use argument_type
        */
    typedef VALUETYPE value_type;

        /** init min and max
        */
    FindMinMax()
    : min( NumericTraits<value_type>::max() ),
      max( NumericTraits<value_type>::min() ),
      count(0)
    {}

        /** (re-)init functor (clear min, max)
        */
    void reset()
    {
        count = 0;
    }

        /** update min and max
        */
    void operator()(argument_type const & v)
    {
        if(count)
        {
            if(v < min) min = v;
            if(max < v) max = v;
        }
        else
        {
            min = v;
            max = v;
        }
        ++count;
    }

        /** update min and max with components of RGBValue<VALUETYPE>
        */
    void operator()(RGBValue<VALUETYPE> const & v)
    {
        operator()(v.red());
        operator()(v.green());
        operator()(v.blue());
    }

        /** merge two statistics
        */
    void operator()(FindMinMax const & v)
    {
        if(v.count)
        {
            if(count)
            {
                if(v.min < min) min = v.min;
                if((this->max) < v.max) max = v.max;
            }
            else
            {
                min = v.min;
                max = v.max;
            }
        }
        count += v.count;
    }

        /** the current min
        */
    VALUETYPE min;

        /** the current max
        */
    VALUETYPE max;

        /** the number of values processed so far
        */
    unsigned int count;

};

template <class VALUETYPE>
class FunctorTraits<FindMinMax<VALUETYPE> >
: public FunctorTraitsBase<FindMinMax<VALUETYPE> >
{
  public:
    typedef VigraTrueType isUnaryAnalyser;
};

/********************************************************/
/*                                                      */
/*                      FindSum                         */
/*                                                      */
/********************************************************/

/** \brief  Find the sum of the pixel values in an image or ROI.

    This Functor can also be used in conjunction with
    \ref ArrayOfRegionStatistics to find the sum of all regions in
    a labeled image, and with the reduce mode of transformMultiArray().

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;

    vigra::FindSum<vigra::BImage::PixelType> sum;   // init functor

    vigra::inspectImage(srcImageRange(img), sum);

    cout << "Sum: " << sum();

    \endcode

    <b> Required Interface:</b>

    \code
    VALUETYPE v1, v2(v1);

    v1 += v2;
    \endcode

*/
template <class VALUETYPE>
class FindSum
: public UnaryReduceFunctorTag
{
   public:

        /** the functor's argument type
        */
    typedef VALUETYPE argument_type;

        /** the functor's result type
        */
    typedef typename NumericTraits<VALUETYPE>::Promote result_type;

        /** init sum
        */
    FindSum()
    : sum_(NumericTraits<result_type>::zero())
    {}

        /** (re-)init sum
        */
    void reset()
    {
        sum_ = NumericTraits<result_type>::zero();
    }

        /** update sum
        */
    void operator()(argument_type const & v)
    {
        sum_ += v;
    }

        /** merge two statistics
        */
    void operator()(FindSum const & v)
    {
        sum_   += v.sum_;
    }

        /** return current sum
        */
    result_type sum() const
    {
        return sum_;
    }

        /** return current sum
        */
    result_type operator()() const
    {
        return sum_;
    }

    result_type sum_;
};



/********************************************************/
/*                                                      */
/*                    FindAverage                       */
/*                                                      */
/********************************************************/

/** \brief  Find the average pixel value in an image or ROI.

    In addition the size of the ROI is calculated.
    This Functor can also be used in conjunction with
    \ref ArrayOfRegionStatistics to find the average of all regions in
    a labeled image.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;

    vigra::FindAverage<vigra::BImage::PixelType> average;   // init functor

    vigra::inspectImage(srcImageRange(img), average);

    cout << "Average: " << average();

    \endcode

    <b> Required Interface:</b>

    \code
    VALUETYPE v1, v2(v1);
    double d;

    v1 += v2;
    v1 / d;
    \endcode

*/
template <class VALUETYPE>
class FindAverage
{
   public:

        /** the functor's argument type
        */
    typedef VALUETYPE argument_type;

        /** the functor's first argument type (for calls with a weight)
        */
    typedef VALUETYPE first_argument_type;

        /** the functor's second argument type (for calls with a weight)
        */
    typedef double second_argument_type;

        /** the functor's result type
        */
    typedef typename NumericTraits<VALUETYPE>::RealPromote result_type;

        /** \deprecated use argument_type and result_type
        */
    typedef typename NumericTraits<VALUETYPE>::RealPromote value_type;

        /** init average
        */
    FindAverage()
    : sum_(NumericTraits<result_type>::zero()), count_(0)
    {}

        /** (re-)init average
        */
    void reset()
    {
        count_ = 0;
        sum_ = NumericTraits<result_type>::zero();
    }

        /** update average
        */
    void operator()(argument_type const & v)
    {
        sum_ += v;
        ++count_;
    }

        /** update average, using weighted input.
         * <tt>stats(value, 1.0)</tt> is equivalent to the unweighted
         * call <tt>stats(value)</tt>, and <tt>stats(value, 2.0)</tt>
         * is equivalent to two unweighted calls.
         */
    void operator()(first_argument_type const & v, second_argument_type weight)
    {
        sum_   += v * weight;
        count_ += weight;
    }

        /** merge two statistics
        */
    void operator()(FindAverage const & v)
    {
        sum_   += v.sum_;
        count_ += v.count_;
    }

        /** return number of values (sum of weights) seen so far
        */
    double count() const
    {
        return count_;
    }

        /** return current average
        */
    result_type average() const
    {
        return sum_ / (double)count_;
    }

        /** return current average
        */
    result_type operator()() const
    {
        return sum_ / (double)count_;
    }

    result_type sum_;
    double count_;
};

template <class VALUETYPE>
class FunctorTraits<FindAverage<VALUETYPE> >
: public FunctorTraitsBase<FindAverage<VALUETYPE> >
{
  public:
    typedef VigraTrueType isInitializer;
    typedef VigraTrueType isUnaryAnalyser;
};

/********************************************************/
/*                                                      */
/*                 FindAverageAndVariance               */
/*                                                      */
/********************************************************/

/** \brief  Find the average pixel value and its variance in an image or ROI.

    This Functor uses West's algorithm to accumulate highly accurate values for
    the mean and the sum of squared differences of all values seen so far (the
    naive incremental algorithm for the computation of the sum of squares
    produces large round-off errors when the mean is much larger than the
    standard deviation of the data.) This Functor can also be used in
    conjunction with \ref ArrayOfRegionStatistics to find the statistics of all
    regions in a labeled image.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;

    vigra::FindAverageAndVariance<vigra::BImage::PixelType> averageAndVariance;   // init functor

    vigra::inspectImage(srcImageRange(img), averageAndVariance);

    cout << "Average: " << averageAndVariance.average() << "\n";
    cout << "Standard deviation: " << sqrt(averageAndVariance.variance()) << "\n";

    \endcode

    <b> Required Interface:</b>

    \code
    VALUETYPE v1, v2(v1);
    double d;

    v1 += v2;
    v1 + v2;
    v1 - v2;
    v1 * v2;
    v1 / d;
    d * v1;
    \endcode

*/
template <class VALUETYPE>
class FindAverageAndVariance
{
   public:

        /** the functor's argument type
        */
    typedef VALUETYPE argument_type;

        /** the functor's first argument type (for calls with a weight)
        */
    typedef VALUETYPE first_argument_type;

        /** the functor's second argument type (for calls with a weight)
        */
    typedef double second_argument_type;

        /** the functor's result type
        */
    typedef typename NumericTraits<VALUETYPE>::RealPromote result_type;

        /** \deprecated use argument_type and result_type
        */
    typedef typename NumericTraits<VALUETYPE>::RealPromote value_type;

        /** init average
        */
    FindAverageAndVariance()
    : mean_(NumericTraits<result_type>::zero()),
      sumOfSquaredDifferences_(NumericTraits<result_type>::zero()),
      count_(0.0)
    {}

        /** (re-)init average and variance
        */
    void reset()
    {
        count_ = 0.0;
        mean_ = NumericTraits<result_type>::zero();
        sumOfSquaredDifferences_ = NumericTraits<result_type>::zero();
    }

        /** update average and variance
        */
    void operator()(argument_type const & v)
    {
        ++count_;
        result_type t1 = v - mean_;
        result_type t2 = t1 / count_;
        mean_ += t2;
        sumOfSquaredDifferences_ += (count_-1.0)*t1*t2;
    }

        /** update average and variance, using weighted input.
         * <tt>stats(value, 1.0)</tt> is equivalent to the unweighted
         * call <tt>stats(value)</tt>, and <tt>stats(value, 2.0)</tt>
         * is equivalent to two unweighted calls.
         */
    void operator()(first_argument_type const & v, second_argument_type weight)
    {
        count_ += weight;
        result_type t1 = v - mean_;
        result_type t2 = t1 * weight / count_;
        mean_ += t2;

        //sumOfSquaredDifferences_ += (count_ - weight)*t1*t2;

        if(count_ > weight)
            sumOfSquaredDifferences_ +=
                (t1 * t1 * weight / count_) * (count_ - weight );
    }

        /** merge two statistics
        */
    void operator()(FindAverageAndVariance const & v)
    {
        double newCount = count_ + v.count_;
        sumOfSquaredDifferences_ += v.sumOfSquaredDifferences_ +
                                    count_ / newCount * v.count_ * (mean_ - v.mean_) * (mean_ - v.mean_);
        mean_ = (count_ * mean_ + v.count_ * v.mean_) / newCount;
        count_ += v.count_;
    }

        /** return number of values (sum of weights) seen so far
        */
    unsigned int count() const
    {
        return (unsigned int)count_;
    }

        /** return current average
        */
    result_type average() const
    {
        return mean_;
    }

        /** return current variance.
            If <tt>unbiased = true</tt>, the sum of squared differences
            is divided by <tt>count()-1</tt> instead of just <tt>count()</tt>.
        */
    result_type variance(bool unbiased = false) const
    {
        return unbiased
                  ? sumOfSquaredDifferences_ / (count_ - 1.0)
                  : sumOfSquaredDifferences_ / count_;
    }

        /** return current variance. calls <tt>variance()</tt>.
        */
    result_type operator()() const
    {
        return variance();
    }

    result_type mean_, sumOfSquaredDifferences_;
    double count_;
};

template <class VALUETYPE>
class FunctorTraits<FindAverageAndVariance<VALUETYPE> >
: public FunctorTraitsBase<FindAverageAndVariance<VALUETYPE> >
{
  public:
    typedef VigraTrueType isInitializer;
    typedef VigraTrueType isUnaryAnalyser;
};

/********************************************************/
/*                                                      */
/*                    FindROISize                       */
/*                                                      */
/********************************************************/

/** \brief Calculate the size of an ROI in an image.

    This Functor is often used in conjunction with
    \ref ArrayOfRegionStatistics to find the sizes of all regions in
    a labeled image.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img, mask;

    vigra::FindROISize<vigra::BImage::PixelType> roisize;   // init functor

    vigra::inspectImageIf(srcImageRange(img), srcImage(mask), roisize);

    cout << "Size of ROI: " << roisize.count;

    \endcode

*/
template <class VALUETYPE>
class FindROISize
{
   public:

        /** the functor's argument type
        */
    typedef VALUETYPE argument_type;

        /** the functor's result type
        */
    typedef unsigned int result_type;

        /** \deprecated use argument_type and result_type
        */
    typedef VALUETYPE value_type;

        /** init counter to 0
        */
    FindROISize()
    : count(0)
    {}

        /** (re-)init ROI size with 0
        */
    void reset()
    {
        count = 0;
    }

        /** update counter
        */
    void operator()(argument_type const &)
    {
        ++count;
    }

        /** return current size
        */
    result_type operator()() const
    {
        return count;
    }

        /** return current size
        */
    result_type size() const
    {
        return count;
    }

        /** merge two statistics
        */
    void operator()(FindROISize const & o)
    {
        count += o.count;
    }

        /** the current counter
        */
    result_type count;

};

template <class VALUETYPE>
class FunctorTraits<FindROISize<VALUETYPE> >
: public FunctorTraitsBase<FindROISize<VALUETYPE> >
{
  public:
    typedef VigraTrueType isInitializer;
    typedef VigraTrueType isUnaryAnalyser;
};

/********************************************************/
/*                                                      */
/*                FindBoundingRectangle                 */
/*                                                      */
/********************************************************/

/** \brief Calculate the bounding rectangle of an ROI in an image.

    As always in VIGRA, <TT>roiRect.lowerRight</TT> is <em> just outside the rectangle</em>.
    That is, the last pixel actually in the rectangle is <TT>roiRect.lowerRight - Diff2D(1,1)</TT>.
    This Functor is often used in conjunction with
    \ref ArrayOfRegionStatistics to find the bounding rectangles
    of all regions in a labeled image.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img, mask;
    ...

    vigra::FindBoundingRectangle roiRect;   // init functor

    // Diff2D is used as the iterator for the source image. This
    // simulates an image where each pixel value equals the pixel's
    // coordinates. The image 'mask' determines the ROI.
    vigra::inspectImageIf(srcIterRange(Diff2D(0,0), (Diff2D)img.size()),
                          srcImage(mask), roiRect);

    cout << "Upper left of ROI: " <<
        roiRect.upperLeft.x << ", " << roiRect.upperLeft.y << endl;
    cout << "Lower right of ROI: " <<
        roiRect.lowerRight.x << ", " << roiRect.lowerRight.y << endl;

    \endcode

*/
class FindBoundingRectangle
{
  public:

        /** the functor's argument type
        */
    typedef Diff2D argument_type;

        /** the functors result type
        */
    typedef Rect2D result_type;

        /** \deprecated use argument_type
        */
    typedef Diff2D value_type;

        /** Upper left of the region as seen so far
        */
    Point2D upperLeft;

        /** Lower right of the region as seen so far
        */
    Point2D lowerRight;

        /** are the functors contents valid ?
        */
    bool valid;

        /** init rectangle to invalid values
        */
    FindBoundingRectangle()
    : valid(false)
    {}

        /** (re-)init functor to find other bounds
        */
    void reset()
    {
        valid = false;
    }

        /** update rectangle by including the coordinate coord
        */
    void operator()(argument_type const & coord)
    {
        if(!valid)
        {
            upperLeft = Point2D(coord);
            lowerRight = Point2D(coord + Diff2D(1,1));
            valid = true;
        }
        else
        {
            upperLeft.x = std::min(upperLeft.x, coord.x);
            upperLeft.y = std::min(upperLeft.y, coord.y);
            lowerRight.x = std::max(lowerRight.x, coord.x + 1);
            lowerRight.y = std::max(lowerRight.y, coord.y + 1);
        }
    }

        /** update rectangle by merging it with another rectangle
        */
    void operator()(FindBoundingRectangle const & otherRegion)
    {
        if(!valid)
        {
            upperLeft = otherRegion.upperLeft;
            lowerRight = otherRegion.lowerRight;
            valid = otherRegion.valid;
        }
        else if(otherRegion.valid)
        {
            upperLeft.x = std::min(upperLeft.x, otherRegion.upperLeft.x);
            upperLeft.y = std::min(upperLeft.y, otherRegion.upperLeft.y);
            lowerRight.x = std::max(lowerRight.x, otherRegion.lowerRight.x);
            lowerRight.y = std::max(lowerRight.y, otherRegion.lowerRight.y);
        }
    }

        /** Get size of current rectangle.
        */
    Size2D size() const
    {
        return lowerRight - upperLeft;
    }

        /** Get current rectangle. <TT>result_type::first</TT> is the upper
            left corner of the rectangle, <TT>result_type::second</TT>
            the lower right.
        */
    result_type operator()() const
    {
        return result_type(upperLeft, lowerRight);
    }
};

template <>
class FunctorTraits<FindBoundingRectangle>
: public FunctorTraitsBase<FindBoundingRectangle>
{
  public:
    typedef VigraTrueType isInitializer;
    typedef VigraTrueType isUnaryAnalyser;
};

/********************************************************/
/*                                                      */
/*                 LastValueFunctor                     */
/*                                                      */
/********************************************************/

/** \brief Stores and returns the last value it has seen.

    This Functor is best used in conjunction with
    \ref ArrayOfRegionStatistics to realize a look-up table.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt> and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;

    vigra::ArrayOfRegionStatistics<LastValueFunctor<unsigned char> > lut(255);

    for(int i=0; i<256; ++i)
    {
        lut[i] = ...; // init look-up table
    }

    vigra::transformImage(srcImageRange(img), destImage(img), lut);

    \endcode

*/
template <class VALUETYPE>
class LastValueFunctor
{
   public:

        /** the functor's argument type
        */
    typedef VALUETYPE argument_type;

        /** the functor's result type
        */
    typedef VALUETYPE result_type;

        /** \deprecated use argument_type and result_type
        */
    typedef VALUETYPE value_type;

        /** default construction of value (i.e. builtin types will be set to zero)
        */
    LastValueFunctor(argument_type const &initial = argument_type())
    : value(initial)
    {}

        /** replace value
        */
    void operator=(argument_type const & v) { value = v; }

        /** reset to initial value (the same as after default construction)
        */
    void reset() { value = VALUETYPE(); }

        /** replace value
        */
    void operator()(argument_type const & v) { value = v; }

        /** return current value
        */
    result_type const & operator()() const { return value; }

        /** the current value
        */
    VALUETYPE value;

};

template <class VALUETYPE>
class FunctorTraits<LastValueFunctor<VALUETYPE> >
: public FunctorTraitsBase<LastValueFunctor<VALUETYPE> >
{
  public:
    typedef VigraTrueType isInitializer;
    typedef VigraTrueType isUnaryAnalyser;
};

/********************************************************/
/*                                                      */
/*                     ReduceFunctor                    */
/*                                                      */
/********************************************************/

/** \brief Apply a functor to reduce the dimensionality of an array.

    This functor can be used to emulate the <tt>reduce</tt> standard function of
    functional programming using <tt>std::for_each()</tt> or <tt>inspectImage()</tt>
    and similar functions. This functor is initialized with a functor encoding
    the expression to be applied, and an accumulator storing the current state
    of the reduction. For each element of the array, the embedded functor is called
    with the accumulator and the current element(s) of the array. The result
    of the reduction is available by calling <tt>reduceFunctor()</tt>.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isUnaryAnalyser</tt>, <tt>FunctorTraits::isBinaryAnalyser</tt>
    and <tt>FunctorTraits::isInitializer</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;
    ... // fill the image

    // create a functor to sum the elements of the image
    vigra::ReduceFunctor<std::plus<int>, int> sumElements(std::plus<int>, 0);

    vigra::inspectImage(srcImageRange(img), sumElements);

    cout << "The sum of the elements " << sumElements() << endl;

    \endcode

    <b> Required Interface:</b>

    \code
    FUNCTOR f;
    VALUETYPE accumulator, current1, current2;

    f(accumulator, current1); // for inspectImage()
    f(accumulator, current1, current2); // for inspectTwoImages()
    \endcode
*/
template <class FUNCTOR, class VALUETYPE>
class ReduceFunctor
{
    FUNCTOR f_;
    VALUETYPE start_, accumulator_;
   public:

        /** the functor's argument type
            when used as a unary inspector.
            (This is not strictly correct since the argument type
            is actually a template parameter.)
        */
    typedef VALUETYPE argument_type;

        /** the functor's first argument type
            when used as a binary inspector.
            (This is not strictly correct since the argument type
            is actually a template parameter.)
        */
    typedef VALUETYPE first_argument_type;

        /** the functor's second argument type
            when used as a binary inspector.
            (This is not strictly correct since the argument type
            is actually a template parameter.)
        */
    typedef VALUETYPE second_argument_type;

        /** the functor's result type
        */
    typedef VALUETYPE result_type;

        /** create with the given functor and initial value \a initial
            for the accumulator.
        */
    ReduceFunctor(FUNCTOR const & f, VALUETYPE const & initial)
    : f_(f),
      start_(initial),
      accumulator_(initial)
    {}

        /** Reset accumulator to the initial value.
        */
    void reset()
      { accumulator_ = start_; }

        /** Use binary functor to connect given value with the accumulator.
            The accumulator is used as the first argument, the value \a v
            as the second.
        */
    template <class T>
    void operator()(T const & v)
    {
        accumulator_ = f_(accumulator_, v);
    }

        /** Use ternary functor to connect given values with accumulator.
            The accumulator is used as the first argument, the values \a v1
            ans \a v2 as the second and third.
        */
    template <class T1, class T2>
    void operator()(T1 const & v1, T2 const & v2)
    {
        accumulator_ = f_(accumulator_, v1, v2);
    }

        /** return current value
        */
    result_type const & operator()() const
      { return accumulator_; }
};

template <class FUNCTOR, class VALUETYPE>
ReduceFunctor<FUNCTOR, VALUETYPE>
reduceFunctor(FUNCTOR const & f, VALUETYPE const & initial)
{
    return ReduceFunctor<FUNCTOR, VALUETYPE>(f, initial);
}

template <class FUNCTOR, class VALUETYPE>
class FunctorTraits<ReduceFunctor<FUNCTOR, VALUETYPE> >
: public FunctorTraitsBase<ReduceFunctor<FUNCTOR, VALUETYPE> >
{
  public:
    typedef VigraTrueType isInitializer;
    typedef VigraTrueType isUnaryAnalyser;
    typedef VigraTrueType isBinaryAnalyser;
};

/********************************************************/
/*                                                      */
/*              ArrayOfRegionStatistics                 */
/*                                                      */
/********************************************************/

/** \brief Calculate statistics for all regions of a labeled image.

    This Functor encapsulates an array of statistics functors, one
    for each label, and selects the one to be updated according to the
    pixel's label.

    <b> Traits defined:</b>

    <tt>FunctorTraits::isBinaryAnalyser</tt> and <tt>FunctorTraits::isUnaryFunctor</tt>
    are true (<tt>VigraTrueType</tt>)

    <b> Usage:</b>

    <b>\#include</b> \<vigra/inspectimage.hxx\><br>
    Namespace: vigra

    \code
    vigra::BImage img;
    vigra::IImage labels;
    int max_label;
    ...

    // init functor as an array of 'max_label' FindMinMax-Functors
    vigra::ArrayOfRegionStatistics<vigra::FindMinMax<vigra::BImage::PixelType> >
                                                         minmax(max_label);

    vigra::inspectTwoImages(srcImageRange(img), srcImage(labels), minmax);

    for(int i=0; i<= max_label; ++i)
    {
        cout << "Max gray level of region " << i << ": "
             << minmax.region[i].max << endl;
    }

    // init functor as an array of 'max_label' FindAverage-Functors
    vigra::ArrayOfRegionStatistics<vigra::FindAverage<vigra::BImage::PixelType> >
                                                         average(max_label);

    vigra::inspectTwoImages(srcImageRange(img), srcImage(labels), average);

    // write back the average of each region into the original image
    vigra::transformImage(srcImageRange(labels), destImage(img), average);

    \endcode

    <b> Required Interface:</b>

    \code
    RegionStatistics region;
    RegionStatistics::argument_type a;
    RegionStatistics::result_type r;

    region(a);     // update statistics
    r = region();  // return statistics

    \endcode
*/
template <class RegionStatistics, class LabelType = int>
class ArrayOfRegionStatistics
    : public detail::get_extra_passes<RegionStatistics>
{
    typedef std::vector<RegionStatistics> RegionArray;

  public:
         /** argument type of the contained statistics object
             becomes first argument of the analyser
         */
    typedef typename RegionStatistics::argument_type first_argument_type;

         /** label type is used to determine the region to be updated
         */
    typedef LabelType second_argument_type;

         /** label type is also used to determine the region to be
             returned by the 1 argument operator()
         */
    typedef LabelType argument_type;

         /** result type of the contained statistics object
             becomes result type of the analyser
         */
    typedef typename RegionStatistics::result_type result_type;

         /** the value type of the array: the contained statistics object.
             <b>Note:</b> this definition was different in older
             VIGRA versions. The old definition was wrong.
         */
    typedef RegionStatistics value_type;

         /** the array's reference type
         */
    typedef RegionStatistics & reference;

         /** the array's const reference type
         */
    typedef RegionStatistics const & const_reference;

         /** type to iterate over the statistics array
         */
    typedef typename RegionArray::iterator iterator;

         /** type to iterate over a const statistics array
         */
    typedef typename RegionArray::const_iterator const_iterator;

        /** init array of RegionStatistics with default size 0.
        */
    ArrayOfRegionStatistics()
    {}

        /** init array of RegionStatistics with index domain
            0...max_region_label.
        */
    ArrayOfRegionStatistics(unsigned int max_region_label)
    : regions(max_region_label+1)
    {}

        /** resize array to new index domain 0...max_region_label.
            All bin are re-initialized.
        */
    void resize(unsigned int max_region_label)
    {
        RegionArray newRegions(max_region_label+1);
        regions.swap(newRegions);
    }

        /** reset the contained functors to their initial state.
        */
    void reset()
    {
        RegionArray newRegions(regions.size());
        regions.swap(newRegions);
    }

        /** update regions statistics for region <TT>label</TT>. The label type
            is converted to <TT>unsigned int</TT>.
        */
    void operator()(first_argument_type const & v, second_argument_type label) {
        regions[static_cast<unsigned int>(label)](v);
    }

        /** merge second region into first
        */
    void merge(argument_type label1, argument_type label2) {
        regions[static_cast<unsigned int>(label1)](regions[static_cast<unsigned int>(label2)]);
    }

        /** ask for maximal index (label) allowed
        */
    unsigned int maxRegionLabel() const
        { return size() - 1; }

        /** ask for array size (i.e. maxRegionLabel() + 1)
        */
    unsigned int size() const
        { return regions.size(); }

        /** access the statistics for a region via its label. The label type
            is converted to <TT>unsigned int</TT>.
        */
    result_type operator()(argument_type label) const
        { return regions[static_cast<unsigned int>(label)](); }

        /** read the statistics functor for a region via its label
        */
    const_reference operator[](argument_type label) const
        { return regions[static_cast<unsigned int>(label)]; }

        /** access the statistics functor for a region via its label
        */
    reference operator[](argument_type label)
        { return regions[static_cast<unsigned int>(label)]; }

        /** iterator to the begin of the region array
        */
    iterator begin()
        { return regions.begin(); }

        /** const iterator to the begin of the region array
        */
    const_iterator begin() const
        { return regions.begin(); }

        /** iterator to the end of the region array
        */
    iterator end()
        { return regions.end(); }

        /** const iterator to the end of the region array
        */
    const_iterator end() const
        { return regions.end(); }

        /** prepare next pass for multi-pass RegionStatistics types
        */
    void calc_sync()
    {
        for (iterator j = begin(); j != end(); ++j)
            this->sync(*j);
    }
    // update: passes >= 2
    struct pass_n_dispatch
    {
        ArrayOfRegionStatistics & x;
        unsigned                  pass_number;
        pass_n_dispatch(ArrayOfRegionStatistics & a, unsigned n)
            : x(a), pass_number(n) {}
        template <class S> // instantiate only when used.
        void operator()(const first_argument_type & v, S label)
        {
            x.regions[static_cast<unsigned>(label)].updatePassN(v, pass_number);
        }
    };
    template <class N> // instantiate only when used.
    pass_n_dispatch pass_n(N n)
    {
        if (n < 2 || static_cast<unsigned>(n) > this->max_passes)
            vigra_fail("ArrayOfRegionStatistics::pass_n(): inconsistent use.");
        return pass_n_dispatch(*this, n);
    }

    std::vector<RegionStatistics> regions;
};

template <class RegionStatistics, class LabelType>
class FunctorTraits<ArrayOfRegionStatistics<RegionStatistics, LabelType> >
: public FunctorTraitsBase<ArrayOfRegionStatistics<RegionStatistics, LabelType> >
{
  public:
    typedef VigraTrueType isUnaryFunctor;
    typedef VigraTrueType isBinaryAnalyser;
};

//@}

} // namespace vigra

#endif // VIGRA_INSPECTIMAGE_HXX