/usr/include/trilinos/Zoltan2_PartitioningProblem.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 | // @HEADER
//
// ***********************************************************************
//
// Zoltan2: A package of combinatorial algorithms for scientific computing
// Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine (kddevin@sandia.gov)
// Erik Boman (egboman@sandia.gov)
// Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER
/*! \file Zoltan2_PartitioningProblem.hpp
\brief Defines the PartitioningProblem class.
*/
#ifndef _ZOLTAN2_PARTITIONINGPROBLEM_HPP_
#define _ZOLTAN2_PARTITIONINGPROBLEM_HPP_
#include <Zoltan2_Problem.hpp>
#include <Zoltan2_PartitioningAlgorithms.hpp>
#include <Zoltan2_PartitioningSolution.hpp>
#include <Zoltan2_EvaluatePartition.hpp>
#include <Zoltan2_GraphModel.hpp>
#include <Zoltan2_IdentifierModel.hpp>
#include <Zoltan2_IntegerRangeList.hpp>
#include <Zoltan2_MachineRepresentation.hpp>
#include <Zoltan2_AlgSerialGreedy.hpp>
#ifdef ZOLTAN2_TASKMAPPING_MOVE
#include <Zoltan2_TaskMapping.hpp>
#endif
#ifndef _WIN32
#include <unistd.h>
#else
#include <process.h>
#define NOMINMAX
#include <windows.h>
#endif
#ifdef HAVE_ZOLTAN2_OVIS
#include <ovis.h>
#endif
namespace Zoltan2{
/*! \brief PartitioningProblem sets up partitioning problems for the user.
*
* The PartitioningProblem is the core of the Zoltan2 partitioning API.
* Based on the the user's input and parameters, the PartitioningProblem
* sets up a computational Model, and a Solution object. When the user
* calls the solve() method, the PartitioningProblem runs the algorithm,
* after which the Solution object may be obtained by the user.
* \todo include pointers to examples
*
* The template parameter is the InputAdapter containing the data that
* is to be partitioned.
*
* \todo hierarchical partitioning
* \todo repartition given an initial solution
* \todo follow partitioning with global or local ordering
* \todo allow unsetting of part sizes by passing in null pointers
* \todo add a parameter by which user tells us there are no self
* edges to be removed.
* \todo - Should Problems and Solution have interfaces for returning
* views and for returning RCPs? Or just one? At a minimum,
* we should have the word "View" in function names that return views.
*/
template<typename Adapter>
class PartitioningProblem : public Problem<Adapter>
{
public:
typedef typename Adapter::scalar_t scalar_t;
typedef typename Adapter::gno_t gno_t;
typedef typename Adapter::lno_t lno_t;
typedef typename Adapter::part_t part_t;
typedef typename Adapter::user_t user_t;
typedef typename Adapter::base_adapter_t base_adapter_t;
//! \brief Constructor where Teuchos communicator is specified
PartitioningProblem(Adapter *A, ParameterList *p,
const RCP<const Teuchos::Comm<int> > &comm):
Problem<Adapter>(A,p,comm),
solution_(),
inputType_(InvalidAdapterType),
graphFlags_(), idFlags_(), coordFlags_(),
algName_(), numberOfWeights_(), partIds_(), partSizes_(),
numberOfCriteria_(), levelNumberParts_(), hierarchical_(false)
{
for(int i=0;i<MAX_NUM_MODEL_TYPES;i++) modelAvail_[i]=false;
initializeProblem();
}
#ifdef HAVE_ZOLTAN2_MPI
/*! \brief Constructor where MPI communicator can be specified
*/
PartitioningProblem(Adapter *A, ParameterList *p, MPI_Comm mpicomm):
PartitioningProblem(A, p,
rcp<const Comm<int> >(new Teuchos::MpiComm<int>(
Teuchos::opaqueWrapper(mpicomm))))
{}
#endif
//! \brief Constructor where communicator is the Teuchos default.
PartitioningProblem(Adapter *A, ParameterList *p):
PartitioningProblem(A, p, Teuchos::DefaultComm<int>::getComm())
{}
/*! \brief Destructor
*/
~PartitioningProblem() {};
//! \brief Direct the problem to create a solution.
//
// \param updateInputData If true this indicates that either
// this is the first attempt at solution, or that we
// are computing a new solution and the input data has
// changed since the previous solution was computed.
// By input data we mean coordinates, topology, or weights.
// If false, this indicates that we are computing a
// new solution using the same input data was used for
// the previous solution, even though the parameters
// may have been changed.
//
// For the sake of performance, we ask the caller to set \c updateInputData
// to false if he/she is computing a new solution using the same input data,
// but different problem parameters, than that which was used to compute
// the most recent solution.
void solve(bool updateInputData=true);
//! \brief Get the solution to the problem.
//
// \return a reference to the solution to the most recent solve().
const PartitioningSolution<Adapter> &getSolution() {
return *(solution_.getRawPtr());
};
/*! \brief Set or reset relative sizes for the parts that Zoltan2 will create.
*
* \param len The size of the \c partIds and \c partSizes lists
* \param partIds A list of \c len part identifiers. Part
* identifiers range from zero to one less than the global
* number of identifiers.
* \param partSizes A list of \c len relative sizes corresponding to
* the \c partIds.
* \param makeCopy If true, Zoltan2 will make a copy of the ids and sizes
* that are provided in this call. If false, Zoltan2 will just save
* the pointers to to the caller's lists. If the pointers will remain
* remain valid throughout the lifetime of the PartitioningProblem,
* and memory use is an issue, then set makeCopy to false. By default,
* Zoltan2 will copy the caller's list of ids and sizes.
*
* A given partid should be provided only once across all ranks.
* Duplicate partIds will generate a std::runtime_error exception when
* the PartitioningSolution is created. Part
* ids that are omitted will be assigned the average of the sizes that
* have been specified.
*
* Subsequent calls to setPartSizes will replace the list of part ids
* and part sizes provided previously.
*
* If the application has set multiple weights per object, then the
* part sizes supplied in this method are applied to the first weight.
*
* Zoltan2 assumes that uniform part sizes are desired by the caller,
* unless specified otherwise in a call to setPartSizes or
* setPartSizesForCriteria.
*
* \todo A user should be able to give us one set of part sizes
* that applies to all weight indices. Right now
* for each weight index that does not have
* uniform part sizes, the user has to give us the
* part sizes once for each.
*/
void setPartSizes(int len, part_t *partIds, scalar_t *partSizes,
bool makeCopy=true)
{
setPartSizesForCriteria(0, len, partIds, partSizes, makeCopy);
}
/*! \brief Set or reset the relative sizes (per weight) for the parts
* that Zoltan2 will create.
*
* \param criteria the criteria for which these
* part sizes apply. Criteria range from zero to one less than
* the number of weights per object specified in the
* caller's InputAdapter.
* \param len The size of the \c partIds and \c partSizes lists
* \param partIds A list of \c len part identifiers. Part
* identifiers range from zero to one less than the global
* number of identifiers.
* \param partSizes A list of \c len relative sizes corresponding to
* the \c partIds.
* \param makeCopy If true, Zoltan2 will make a copy of the ids and sizes
* that are provided in this call. If false, Zoltan2 will just save
* the pointers to to the caller's lists. If the pointers will remain
* remain valid throughout the lifetime of the PartitioningProblem,
* and memory use is an issue, then set makeCopy to false. By default,
* Zoltan2 will copy the caller's list of ids and sizes.
*
* A given partid should only be provided once across the application.
* Duplicate partIds will generate a std::runtime_error exception when
* the PartitioningSolution is created. Part
* ids that are omitted will be assigned the average of the sizes that
* have been specified.
*
* Subsequent calls to setPartSizes for the same criteria will replace
* the list of part ids and part sizes provided for that criteria previously.
*
* Zoltan2 assumes that uniform part sizes are desired by the caller,
* unless specified otherwise in a call to setPartSizes or
* setPartSizesForCriteria.
*/
void setPartSizesForCriteria(int criteria, int len, part_t *partIds,
scalar_t *partSizes, bool makeCopy=true) ;
/*
void setMachine(MachineRepresentation<typename Adapter::base_adapter_t::scalar_t> *machine);
*/
/*! \brief Set up validators specific to this Problem
*/
static void getValidParameters(ParameterList & pl)
{
Zoltan2_AlgMJ<Adapter>::getValidParameters(pl);
AlgPuLP<Adapter>::getValidParameters(pl);
AlgPTScotch<Adapter>::getValidParameters(pl);
AlgSerialGreedy<Adapter>::getValidParameters(pl);
AlgForTestingOnly<Adapter>::getValidParameters(pl);
// This set up does not use tuple because we didn't have constructors
// that took that many elements - Tuple will need to be modified and I
// didn't want to have low level changes with this particular refactor
// TO DO: Add more Tuple constructors and then redo this code to be
// Teuchos::tuple<std::string> algorithm_names( "rcb", "multijagged" ... );
Array<std::string> algorithm_names(17);
algorithm_names[0] = "rcb";
algorithm_names[1] = "multijagged";
algorithm_names[2] = "rib";
algorithm_names[3] = "hsfc";
algorithm_names[4] = "patoh";
algorithm_names[5] = "phg";
algorithm_names[6] = "metis";
algorithm_names[7] = "parmetis";
algorithm_names[8] = "pulp";
algorithm_names[9] = "parma";
algorithm_names[10] = "scotch";
algorithm_names[11] = "ptscotch";
algorithm_names[12] = "block";
algorithm_names[13] = "cyclic";
algorithm_names[14] = "random";
algorithm_names[15] = "zoltan";
algorithm_names[16] = "forTestingOnly";
RCP<Teuchos::StringValidator> algorithm_Validator = Teuchos::rcp(
new Teuchos::StringValidator( algorithm_names ));
pl.set("algorithm", "random", "partitioning algorithm",
algorithm_Validator);
// bool parameter
pl.set("keep_partition_tree", false, "If true, will keep partition tree",
Environment::getBoolValidator());
// bool parameter
pl.set("rectilinear", false, "If true, then when a cut is made, all of the "
"dots located on the cut are moved to the same side of the cut. The "
"resulting regions are then rectilinear. The resulting load balance may "
"not be as good as when the group of dots is split by the cut. ",
Environment::getBoolValidator());
RCP<Teuchos::StringValidator> partitioning_objective_Validator =
Teuchos::rcp( new Teuchos::StringValidator(
Teuchos::tuple<std::string>( "balance_object_count",
"balance_object_weight", "multicriteria_minimize_total_weight",
"multicriteria_minimize_maximum_weight",
"multicriteria_balance_total_maximum", "minimize_cut_edge_count",
"minimize_cut_edge_weight", "minimize_neighboring_parts",
"minimize_boundary_vertices" )));
pl.set("partitioning_objective", "balance_object_weight",
"objective of partitioning", partitioning_objective_Validator);
pl.set("imbalance_tolerance", 1.1, "imbalance tolerance, ratio of "
"maximum load over average load", Environment::getAnyDoubleValidator());
// num_global_parts >= 1
RCP<Teuchos::EnhancedNumberValidator<int>> num_global_parts_Validator =
Teuchos::rcp( new Teuchos::EnhancedNumberValidator<int>(
1, Teuchos::EnhancedNumberTraits<int>::max()) ); // no maximum
pl.set("num_global_parts", 1, "global number of parts to compute "
"(0 means use the number of processes)", num_global_parts_Validator);
// num_local_parts >= 0
RCP<Teuchos::EnhancedNumberValidator<int>> num_local_parts_Validator =
Teuchos::rcp( new Teuchos::EnhancedNumberValidator<int>(
0, Teuchos::EnhancedNumberTraits<int>::max()) ); // no maximum
pl.set("num_local_parts", 0, "number of parts to compute for this "
"process (num_global_parts == sum of all num_local_parts)",
num_local_parts_Validator);
RCP<Teuchos::StringValidator> partitioning_approach_Validator =
Teuchos::rcp( new Teuchos::StringValidator(
Teuchos::tuple<std::string>( "partition", "repartition",
"maximize_overlap" )));
pl.set("partitioning_approach", "partition", "Partition from scratch, "
"partition incrementally from current partition, of partition from "
"scratch but maximize overlap with the current partition",
partitioning_approach_Validator);
RCP<Teuchos::StringValidator> objects_to_partition_Validator =
Teuchos::rcp( new Teuchos::StringValidator(
Teuchos::tuple<std::string>( "matrix_rows", "matrix_columns",
"matrix_nonzeros", "mesh_elements", "mesh_nodes", "graph_edges",
"graph_vertices", "coordinates", "identifiers" )));
pl.set("objects_to_partition", "graph_vertices", "Objects to be partitioned",
objects_to_partition_Validator);
RCP<Teuchos::StringValidator> model_Validator = Teuchos::rcp(
new Teuchos::StringValidator(
Teuchos::tuple<std::string>( "hypergraph", "graph",
"geometry", "ids" )));
pl.set("model", "graph", "This is a low level parameter. Normally the "
"library will choose a computational model based on the algorithm or "
"objective specified by the user.", model_Validator);
// bool parameter
pl.set("remap_parts", false, "remap part numbers to minimize migration "
"between old and new partitions", Environment::getBoolValidator() );
pl.set("mapping_type", -1, "Mapping of solution to the processors. -1 No"
" Mapping, 0 coordinate mapping.", Environment::getAnyIntValidator());
RCP<Teuchos::EnhancedNumberValidator<int>> ghost_layers_Validator =
Teuchos::rcp( new Teuchos::EnhancedNumberValidator<int>(1, 10, 1, 0) );
pl.set("ghost_layers", 2, "number of layers for ghosting used in "
"hypergraph ghost method", ghost_layers_Validator);
}
private:
void initializeProblem();
void createPartitioningProblem(bool newData);
RCP<PartitioningSolution<Adapter> > solution_;
#ifdef ZOLTAN2_TASKMAPPING_MOVE
RCP<MachineRepresentation<scalar_t,part_t> > machine_;
#endif
BaseAdapterType inputType_;
//ModelType modelType_;
bool modelAvail_[MAX_NUM_MODEL_TYPES];
modelFlag_t graphFlags_;
modelFlag_t idFlags_;
modelFlag_t coordFlags_;
std::string algName_;
int numberOfWeights_;
// Suppose Array<part_t> partIds = partIds_[w]. If partIds.size() > 0
// then the user supplied part sizes for weight index "w", and the sizes
// corresponding to the Ids in partIds are partSizes[w].
//
// If numberOfWeights_ >= 0, then there is an Id and Sizes array for
// for each weight. Otherwise the user did not supply object weights,
// but they can still specify part sizes.
// So numberOfCriteria_ is numberOfWeights_ or one, whichever is greater.
ArrayRCP<ArrayRCP<part_t> > partIds_;
ArrayRCP<ArrayRCP<scalar_t> > partSizes_;
int numberOfCriteria_;
// Number of parts to be computed at each level in hierarchical partitioning.
ArrayRCP<int> levelNumberParts_;
bool hierarchical_;
};
////////////////////////////////////////////////////////////////////////
/*
template <typename Adapter>
void PartitioningProblem<Adapter>::setMachine(MachineRepresentation<typename Adapter::base_adapter_t::scalar_t> *machine){
this->machine_ = RCP<MachineRepresentation<typename Adapter::base_adapter_t::scalar_t> > (machine, false);
}
*/
template <typename Adapter>
void PartitioningProblem<Adapter>::initializeProblem()
{
HELLO;
this->env_->debug(DETAILED_STATUS, "PartitioningProblem::initializeProblem");
if (getenv("DEBUGME")){
#ifndef _WIN32
std::cout << getpid() << std::endl;
sleep(15);
#else
std::cout << _getpid() << std::endl;
Sleep(15000);
#endif
}
#ifdef HAVE_ZOLTAN2_OVIS
ovis_enabled(this->comm_->getRank());
#endif
// Create a copy of the user's communicator.
#ifdef ZOLTAN2_TASKMAPPING_MOVE
machine_ = RCP<MachineRepresentation<scalar_t,part_t> >(
new MachineRepresentation<scalar_t,part_t>(*(this->comm_)));
#endif
// Number of criteria is number of user supplied weights if non-zero.
// Otherwise it is 1 and uniform weight is implied.
numberOfWeights_ = this->inputAdapter_->getNumWeightsPerID();
numberOfCriteria_ = (numberOfWeights_ > 1) ? numberOfWeights_ : 1;
inputType_ = this->inputAdapter_->adapterType();
// The Caller can specify part sizes in setPartSizes(). If he/she
// does not, the part size arrays are empty.
ArrayRCP<part_t> *noIds = new ArrayRCP<part_t> [numberOfCriteria_];
ArrayRCP<scalar_t> *noSizes = new ArrayRCP<scalar_t> [numberOfCriteria_];
partIds_ = arcp(noIds, 0, numberOfCriteria_, true);
partSizes_ = arcp(noSizes, 0, numberOfCriteria_, true);
if (this->env_->getDebugLevel() >= DETAILED_STATUS){
std::ostringstream msg;
msg << this->comm_->getSize() << " procs,"
<< numberOfWeights_ << " user-defined weights\n";
this->env_->debug(DETAILED_STATUS, msg.str());
}
this->env_->memory("After initializeProblem");
}
template <typename Adapter>
void PartitioningProblem<Adapter>::setPartSizesForCriteria(
int criteria, int len, part_t *partIds, scalar_t *partSizes, bool makeCopy)
{
this->env_->localInputAssertion(__FILE__, __LINE__, "invalid length",
len>= 0, BASIC_ASSERTION);
this->env_->localInputAssertion(__FILE__, __LINE__, "invalid criteria",
criteria >= 0 && criteria < numberOfCriteria_, BASIC_ASSERTION);
if (len == 0){
partIds_[criteria] = ArrayRCP<part_t>();
partSizes_[criteria] = ArrayRCP<scalar_t>();
return;
}
this->env_->localInputAssertion(__FILE__, __LINE__, "invalid arrays",
partIds && partSizes, BASIC_ASSERTION);
// The global validity of the partIds and partSizes arrays is performed
// by the PartitioningSolution, which computes global part distribution and
// part sizes.
part_t *z2_partIds = NULL;
scalar_t *z2_partSizes = NULL;
bool own_memory = false;
if (makeCopy){
z2_partIds = new part_t [len];
z2_partSizes = new scalar_t [len];
this->env_->localMemoryAssertion(__FILE__, __LINE__, len, z2_partSizes);
memcpy(z2_partIds, partIds, len * sizeof(part_t));
memcpy(z2_partSizes, partSizes, len * sizeof(scalar_t));
own_memory=true;
}
else{
z2_partIds = partIds;
z2_partSizes = partSizes;
}
partIds_[criteria] = arcp(z2_partIds, 0, len, own_memory);
partSizes_[criteria] = arcp(z2_partSizes, 0, len, own_memory);
}
template <typename Adapter>
void PartitioningProblem<Adapter>::solve(bool updateInputData)
{
this->env_->debug(DETAILED_STATUS, "Entering solve");
// Create the computational model.
this->env_->timerStart(MACRO_TIMERS, "create problem");
createPartitioningProblem(updateInputData);
this->env_->timerStop(MACRO_TIMERS, "create problem");
// TODO: If hierarchical_
// Create the solution. The algorithm will query the Solution
// for part and weight information. The algorithm will
// update the solution with part assignments and quality metrics.
// Create the algorithm
try {
if (algName_ == std::string("multijagged")) {
this->algorithm_ = rcp(new Zoltan2_AlgMJ<Adapter>(this->envConst_,
this->comm_,
this->coordinateModel_));
}
else if (algName_ == std::string("zoltan")) {
this->algorithm_ = rcp(new AlgZoltan<Adapter>(this->envConst_,
this->comm_,
this->baseInputAdapter_));
}
else if (algName_ == std::string("parma")) {
this->algorithm_ = rcp(new AlgParMA<Adapter>(this->envConst_,
this->comm_,
this->baseInputAdapter_));
}
else if (algName_ == std::string("scotch")) {
this->algorithm_ = rcp(new AlgPTScotch<Adapter>(this->envConst_,
this->comm_,
this->baseInputAdapter_));
}
else if (algName_ == std::string("parmetis")) {
this->algorithm_ = rcp(new AlgParMETIS<Adapter>(this->envConst_,
this->comm_,
this->graphModel_));
}
else if (algName_ == std::string("pulp")) {
this->algorithm_ = rcp(new AlgPuLP<Adapter>(this->envConst_,
this->comm_,
this->baseInputAdapter_));
}
else if (algName_ == std::string("block")) {
this->algorithm_ = rcp(new AlgBlock<Adapter>(this->envConst_,
this->comm_, this->identifierModel_));
}
else if (algName_ == std::string("phg") ||
algName_ == std::string("patoh")) {
// phg and patoh provided through Zoltan
Teuchos::ParameterList &pl = this->env_->getParametersNonConst();
Teuchos::ParameterList &zparams = pl.sublist("zoltan_parameters",false);
if (numberOfWeights_ > 0) {
char strval[10];
sprintf(strval, "%d", numberOfWeights_);
zparams.set("OBJ_WEIGHT_DIM", strval);
}
zparams.set("LB_METHOD", algName_.c_str());
zparams.set("LB_APPROACH", "PARTITION");
algName_ = std::string("zoltan");
this->algorithm_ = rcp(new AlgZoltan<Adapter>(this->envConst_,
this->comm_,
this->baseInputAdapter_));
}
else if (algName_ == std::string("forTestingOnly")) {
this->algorithm_ = rcp(new AlgForTestingOnly<Adapter>(this->envConst_,
this->comm_,
this->baseInputAdapter_));
}
// else if (algName_ == std::string("rcb")) {
// this->algorithm_ = rcp(new AlgRCB<Adapter>(this->envConst_,this->comm_,
// this->coordinateModel_));
// }
else {
throw std::logic_error("partitioning algorithm not supported");
}
}
Z2_FORWARD_EXCEPTIONS;
// Create the solution
this->env_->timerStart(MACRO_TIMERS, "create solution");
PartitioningSolution<Adapter> *soln = NULL;
try{
soln = new PartitioningSolution<Adapter>(
this->envConst_, this->comm_, numberOfWeights_,
partIds_.view(0, numberOfCriteria_),
partSizes_.view(0, numberOfCriteria_), this->algorithm_);
}
Z2_FORWARD_EXCEPTIONS;
solution_ = rcp(soln);
this->env_->timerStop(MACRO_TIMERS, "create solution");
this->env_->memory("After creating Solution");
// Call the algorithm
try {
this->algorithm_->partition(solution_);
}
Z2_FORWARD_EXCEPTIONS;
//if mapping is requested
const Teuchos::ParameterEntry *pe = this->envConst_->getParameters().getEntryPtr("mapping_type");
int mapping_type = -1;
if (pe){
mapping_type = pe->getValue(&mapping_type);
}
//if mapping is 0 -- coordinate mapping
#if ZOLTAN2_TASKMAPPING_MOVE
if (mapping_type == 0){
//part_t *task_communication_xadj = NULL, *task_communication_adj = NULL;
Zoltan2::CoordinateTaskMapper <Adapter, part_t> *ctm=
new Zoltan2::CoordinateTaskMapper<Adapter,part_t>(
this->comm_.getRawPtr(),
machine_.getRawPtr(),
this->coordinateModel_.getRawPtr(),
solution_.getRawPtr(),
this->envConst_.getRawPtr()
//,task_communication_xadj,
//task_communication_adj
);
// KDD For now, we would need to re-map the part numbers in the solution.
// KDD I suspect we'll later need to distinguish between part numbers and
// KDD process numbers to provide separation between partitioning and
// KDD mapping. For example, does this approach here assume #parts == #procs?
// KDD If we map k tasks to p processes with k > p, do we effectively reduce
// KDD the number of tasks (parts) in the solution?
#ifdef KDD_READY
const part_t *oldParts = solution_->getPartListView();
size_t nLocal = ia->getNumLocalIds();
for (size_t i = 0; i < nLocal; i++) {
// kind of cheating since oldParts is a view; probably want an interface in solution
// for resetting the PartList rather than hacking in like this.
oldParts[i] = ctm->getAssignedProcForTask(oldParts[i]);
}
#endif
//for now just delete the object.
delete ctm;
}
#endif
else if (mapping_type == 1){
//if mapping is 1 -- graph mapping
}
this->env_->debug(DETAILED_STATUS, "Exiting solve");
}
template <typename Adapter>
void PartitioningProblem<Adapter>::createPartitioningProblem(bool newData)
{
this->env_->debug(DETAILED_STATUS,
"PartitioningProblem::createPartitioningProblem");
using Teuchos::ParameterList;
// A Problem object may be reused. The input data may have changed and
// new parameters or part sizes may have been set.
//
// Save these values in order to determine if we need to create a new model.
//ModelType previousModel = modelType_;
bool prevModelAvail[MAX_NUM_MODEL_TYPES];
for(int i=0;i<MAX_NUM_MODEL_TYPES;i++)
{
prevModelAvail[i] = modelAvail_[i];
}
modelFlag_t previousGraphModelFlags = graphFlags_;
modelFlag_t previousIdentifierModelFlags = idFlags_;
modelFlag_t previousCoordinateModelFlags = coordFlags_;
//modelType_ = InvalidModel;
for(int i=0;i<MAX_NUM_MODEL_TYPES;i++)
{
modelAvail_[i] = false;
}
graphFlags_.reset();
idFlags_.reset();
coordFlags_.reset();
////////////////////////////////////////////////////////////////////////////
// It's possible at this point that the Problem may want to
// add problem parameters to the parameter list in the Environment.
//
// Since the parameters in the Environment have already been
// validated in its constructor, a new Environment must be created:
////////////////////////////////////////////////////////////////////////////
// Teuchos::RCP<const Teuchos::Comm<int> > oldComm = this->env_->comm_;
// const ParameterList &oldParams = this->env_->getUnvalidatedParameters();
//
// ParameterList newParams = oldParams;
// newParams.set("new_parameter", "new_value");
//
// ParameterList &newPartParams = newParams.sublist("partitioning");
// newPartParams.set("new_partitioning_parameter", "its_value");
//
// this->env_ = rcp(new Environment(newParams, oldComm));
////////////////////////////////////////////////////////////////////////////
this->env_->debug(DETAILED_STATUS, " parameters");
Environment &env = *(this->env_);
ParameterList &pl = env.getParametersNonConst();
std::string defString("default");
// Did the user specify a computational model?
std::string model(defString);
const Teuchos::ParameterEntry *pe = pl.getEntryPtr("model");
if (pe)
model = pe->getValue<std::string>(&model);
// Did the user specify an algorithm?
std::string algorithm(defString);
pe = pl.getEntryPtr("algorithm");
if (pe)
algorithm = pe->getValue<std::string>(&algorithm);
// Possible algorithm requirements that must be conveyed to the model:
bool needConsecutiveGlobalIds = false;
bool removeSelfEdges= false;
///////////////////////////////////////////////////////////////////
// Determine algorithm, model, and algorithm requirements. This
// is a first pass. Feel free to change this and add to it.
if (algorithm != defString)
{
// Figure out the model required by the algorithm
if (algorithm == std::string("block") ||
algorithm == std::string("random") ||
algorithm == std::string("cyclic") ){
//modelType_ = IdentifierModelType;
modelAvail_[IdentifierModelType] = true;
algName_ = algorithm;
}
else if (algorithm == std::string("zoltan") ||
algorithm == std::string("parma") ||
algorithm == std::string("forTestingOnly"))
{
algName_ = algorithm;
}
else if (algorithm == std::string("rcb") ||
algorithm == std::string("rib") ||
algorithm == std::string("hsfc"))
{
// rcb, rib, hsfc provided through Zoltan
Teuchos::ParameterList &zparams = pl.sublist("zoltan_parameters",false);
zparams.set("LB_METHOD", algorithm);
if (numberOfWeights_ > 0) {
char strval[10];
sprintf(strval, "%d", numberOfWeights_);
zparams.set("OBJ_WEIGHT_DIM", strval);
}
algName_ = std::string("zoltan");
}
else if (algorithm == std::string("multijagged"))
{
//modelType_ = CoordinateModelType;
modelAvail_[CoordinateModelType]=true;
algName_ = algorithm;
}
else if (algorithm == std::string("metis") ||
algorithm == std::string("parmetis"))
{
//modelType_ = GraphModelType;
modelAvail_[GraphModelType]=true;
algName_ = algorithm;
removeSelfEdges = true;
needConsecutiveGlobalIds = true;
}
else if (algorithm == std::string("scotch") ||
algorithm == std::string("ptscotch")) // BDD: Don't construct graph for scotch here
{
algName_ = algorithm;
}
else if (algorithm == std::string("pulp"))
{
algName_ = algorithm;
}
else if (algorithm == std::string("patoh") ||
algorithm == std::string("phg"))
{
// if ((modelType_ != GraphModelType) &&
// (modelType_ != HypergraphModelType) )
if ((modelAvail_[GraphModelType]==false) &&
(modelAvail_[HypergraphModelType]==false) )
{
//modelType_ = HypergraphModelType;
modelAvail_[HypergraphModelType]=true;
}
algName_ = algorithm;
}
#ifdef INCLUDE_ZOLTAN2_EXPERIMENTAL_WOLF
else if (algorithm == std::string("nd"))
{
modelAvail_[GraphModelType]=true;
modelAvail_[CoordinateModelType]=true;
algName_ = algorithm;
}
#endif
else
{
// Parameter list should ensure this does not happen.
throw std::logic_error("parameter list algorithm is invalid");
}
}
else if (model != defString)
{
// Figure out the algorithm suggested by the model.
if (model == std::string("hypergraph"))
{
//modelType_ = HypergraphModelType;
modelAvail_[HypergraphModelType]=true;
if (this->comm_->getSize() > 1)
algName_ = std::string("phg");
else
algName_ = std::string("patoh");
}
else if (model == std::string("graph"))
{
//modelType_ = GraphModelType;
modelAvail_[GraphModelType]=true;
#ifdef HAVE_ZOLTAN2_SCOTCH
modelAvail_[GraphModelType]=false; // graph constructed by AlgPTScotch
if (this->comm_->getSize() > 1)
algName_ = std::string("ptscotch");
else
algName_ = std::string("scotch");
#else
#ifdef HAVE_ZOLTAN2_PARMETIS
if (this->comm_->getSize() > 1)
algName_ = std::string("parmetis");
else
algName_ = std::string("metis");
removeSelfEdges = true;
needConsecutiveGlobalIds = true;
#else
#ifdef HAVE_ZOLTAN2_PULP
// TODO: XtraPuLP
//if (this->comm_->getSize() > 1)
// algName_ = std::string("xtrapulp");
//else
algName_ = std::string("pulp");
#else
if (this->comm_->getSize() > 1)
algName_ = std::string("phg");
else
algName_ = std::string("patoh");
#endif
#endif
#endif
}
else if (model == std::string("geometry"))
{
//modelType_ = CoordinateModelType;
modelAvail_[CoordinateModelType]=true;
algName_ = std::string("multijagged");
}
else if (model == std::string("ids"))
{
//modelType_ = IdentifierModelType;
modelAvail_[IdentifierModelType]=true;
algName_ = std::string("block");
}
else
{
// Parameter list should ensure this does not happen.
env.localBugAssertion(__FILE__, __LINE__,
"parameter list model type is invalid", 1, BASIC_ASSERTION);
}
}
else
{
// Determine an algorithm and model suggested by the input type.
// TODO: this is a good time to use the time vs. quality parameter
// in choosing an algorithm, and setting some parameters
if (inputType_ == MatrixAdapterType)
{
//modelType_ = HypergraphModelType;
modelAvail_[HypergraphModelType]=true;
if (this->comm_->getSize() > 1)
algName_ = std::string("phg");
else
algName_ = std::string("patoh");
}
else if (inputType_ == GraphAdapterType ||
inputType_ == MeshAdapterType)
{
//modelType_ = GraphModelType;
modelAvail_[GraphModelType]=true;
if (this->comm_->getSize() > 1)
algName_ = std::string("phg");
else
algName_ = std::string("patoh");
}
else if (inputType_ == VectorAdapterType)
{
//modelType_ = CoordinateModelType;
modelAvail_[CoordinateModelType]=true;
algName_ = std::string("multijagged");
}
else if (inputType_ == IdentifierAdapterType)
{
//modelType_ = IdentifierModelType;
modelAvail_[IdentifierModelType]=true;
algName_ = std::string("block");
}
else{
// This should never happen
throw std::logic_error("input type is invalid");
}
}
// Hierarchical partitioning?
Array<int> valueList;
pe = pl.getEntryPtr("topology");
if (pe){
valueList = pe->getValue<Array<int> >(&valueList);
if (!Zoltan2::noValuesAreInRangeList<int>(valueList)){
int *n = new int [valueList.size() + 1];
levelNumberParts_ = arcp(n, 0, valueList.size() + 1, true);
int procsPerNode = 1;
for (int i=0; i < valueList.size(); i++){
levelNumberParts_[i+1] = valueList[i];
procsPerNode *= valueList[i];
}
// Number of parts in the first level
levelNumberParts_[0] = env.numProcs_ / procsPerNode;
if (env.numProcs_ % procsPerNode > 0)
levelNumberParts_[0]++;
}
}
else{
levelNumberParts_.clear();
}
hierarchical_ = levelNumberParts_.size() > 0;
// Object to be partitioned? (rows, columns, etc)
std::string objectOfInterest(defString);
pe = pl.getEntryPtr("objects_to_partition");
if (pe)
objectOfInterest = pe->getValue<std::string>(&objectOfInterest);
///////////////////////////////////////////////////////////////////
// Set model creation flags, if any.
this->env_->debug(DETAILED_STATUS, " models");
// if (modelType_ == GraphModelType)
if (modelAvail_[GraphModelType]==true)
{
// Any parameters in the graph sublist?
std::string symParameter(defString);
pe = pl.getEntryPtr("symmetrize_graph");
if (pe){
symParameter = pe->getValue<std::string>(&symParameter);
if (symParameter == std::string("transpose"))
graphFlags_.set(SYMMETRIZE_INPUT_TRANSPOSE);
else if (symParameter == std::string("bipartite"))
graphFlags_.set(SYMMETRIZE_INPUT_BIPARTITE);
}
bool sgParameter = false;
pe = pl.getEntryPtr("subset_graph");
if (pe)
sgParameter = pe->getValue(&sgParameter);
if (sgParameter == 1)
graphFlags_.set(BUILD_SUBSET_GRAPH);
// Any special behaviors required by the algorithm?
if (removeSelfEdges)
graphFlags_.set(REMOVE_SELF_EDGES);
if (needConsecutiveGlobalIds)
graphFlags_.set(GENERATE_CONSECUTIVE_IDS);
// How does user input map to vertices and edges?
if (inputType_ == MatrixAdapterType){
if (objectOfInterest == defString ||
objectOfInterest == std::string("matrix_rows") )
graphFlags_.set(VERTICES_ARE_MATRIX_ROWS);
else if (objectOfInterest == std::string("matrix_columns"))
graphFlags_.set(VERTICES_ARE_MATRIX_COLUMNS);
else if (objectOfInterest == std::string("matrix_nonzeros"))
graphFlags_.set(VERTICES_ARE_MATRIX_NONZEROS);
}
else if (inputType_ == MeshAdapterType){
if (objectOfInterest == defString ||
objectOfInterest == std::string("mesh_nodes") )
graphFlags_.set(VERTICES_ARE_MESH_NODES);
else if (objectOfInterest == std::string("mesh_elements"))
graphFlags_.set(VERTICES_ARE_MESH_ELEMENTS);
}
}
//MMW is it ok to remove else?
// else if (modelType_ == IdentifierModelType)
if (modelAvail_[IdentifierModelType]==true)
{
// Any special behaviors required by the algorithm?
}
// else if (modelType_ == CoordinateModelType)
if (modelAvail_[CoordinateModelType]==true)
{
// Any special behaviors required by the algorithm?
}
if (newData ||
(modelAvail_[GraphModelType]!=prevModelAvail[GraphModelType]) ||
(modelAvail_[HypergraphModelType]!=prevModelAvail[HypergraphModelType])||
(modelAvail_[CoordinateModelType]!=prevModelAvail[CoordinateModelType])||
(modelAvail_[IdentifierModelType]!=prevModelAvail[IdentifierModelType])||
// (modelType_ != previousModel) ||
(graphFlags_ != previousGraphModelFlags) ||
(coordFlags_ != previousCoordinateModelFlags) ||
(idFlags_ != previousIdentifierModelFlags))
{
// Create the computational model.
// Models are instantiated for base input adapter types (mesh,
// matrix, graph, and so on). We pass a pointer to the input
// adapter, cast as the base input type.
//KDD Not sure why this shadow declaration is needed
//KDD Comment out for now; revisit later if problems.
//KDD const Teuchos::ParameterList pl = this->envConst_->getParameters();
//bool exceptionThrow = true;
if(modelAvail_[GraphModelType]==true)
{
this->env_->debug(DETAILED_STATUS, " building graph model");
this->graphModel_ = rcp(new GraphModel<base_adapter_t>(
this->baseInputAdapter_, this->envConst_, this->comm_,
graphFlags_));
this->baseModel_ = rcp_implicit_cast<const Model<base_adapter_t> >(
this->graphModel_);
}
if(modelAvail_[HypergraphModelType]==true)
{
//KDD USING ZOLTAN FOR HYPERGRAPH FOR NOW
//KDD std::cout << "Hypergraph model not implemented yet..." << std::endl;
}
if(modelAvail_[CoordinateModelType]==true)
{
this->env_->debug(DETAILED_STATUS, " building coordinate model");
this->coordinateModel_ = rcp(new CoordinateModel<base_adapter_t>(
this->baseInputAdapter_, this->envConst_, this->comm_,
coordFlags_));
this->baseModel_ = rcp_implicit_cast<const Model<base_adapter_t> >(
this->coordinateModel_);
}
if(modelAvail_[IdentifierModelType]==true)
{
this->env_->debug(DETAILED_STATUS, " building identifier model");
this->identifierModel_ = rcp(new IdentifierModel<base_adapter_t>(
this->baseInputAdapter_, this->envConst_, this->comm_,
idFlags_));
this->baseModel_ = rcp_implicit_cast<const Model<base_adapter_t> >(
this->identifierModel_);
}
this->env_->memory("After creating Model");
this->env_->debug(DETAILED_STATUS, "createPartitioningProblem done");
}
}
} // namespace Zoltan2
#endif
|