This file is indexed.

/usr/include/trilinos/Zoltan2_PamgenMeshAdapter.hpp is in libtrilinos-zoltan2-dev 12.12.1-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
// @HEADER
//
// ***********************************************************************
//
//   Zoltan2: A package of combinatorial algorithms for scientific computing
//                  Copyright 2012 Sandia Corporation
//
// Under the terms of Contract DE-AC04-94AL85000 with Sandia Corporation,
// the U.S. Government retains certain rights in this software.
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// 1. Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// 2. Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the distribution.
//
// 3. Neither the name of the Corporation nor the names of the
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY SANDIA CORPORATION "AS IS" AND ANY
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
// IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
// PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL SANDIA CORPORATION OR THE
// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
//
// Questions? Contact Karen Devine      (kddevin@sandia.gov)
//                    Erik Boman        (egboman@sandia.gov)
//                    Siva Rajamanickam (srajama@sandia.gov)
//
// ***********************************************************************
//
// @HEADER

/*! \file Zoltan2_PamgenMeshAdapter.hpp
    \brief Defines the PamgenMeshAdapter class.
*/

#ifndef _ZOLTAN2_PAMGENMESHADAPTER_HPP_
#define _ZOLTAN2_PAMGENMESHADAPTER_HPP_

#include <Zoltan2_MeshAdapter.hpp>
#include <Zoltan2_StridedData.hpp>
#include <Teuchos_as.hpp>
#include <vector>
#include <string>

#include <pamgen_im_exodusII.h>
#include <pamgen_im_ne_nemesisI.h>

namespace Zoltan2 {

/*! \brief This class represents a mesh.
 *
 *  A mesh can be a collection of global Identifiers
 *           and their associated weights, if any.
 *
 *  The user supplies the identifiers and weights by way of pointers
 *    to arrays.  
 *
    The template parameter (\c User) is a C++ class type which provides the
    actual data types with which the Zoltan2 library will be compiled, through
    a Traits mechanism.  \c User may be the
    actual class used by application to represent coordinates, or it may be
    the empty helper class \c BasicUserTypes with which a Zoltan2 user
    can easily supply the data types for the library.

    The \c scalar_t type, representing use data such as matrix values, is
    used by Zoltan2 for weights, coordinates, part sizes and
    quality metrics.
    Some User types (like Tpetra::CrsMatrix) have an inherent scalar type,
    and some
    (like Tpetra::CrsGraph) do not.  For such objects, the scalar type is
    set by Zoltan2 to \c float.  If you wish to change it to double, set
    the second template parameter to \c double.

 */

template <typename User>
  class PamgenMeshAdapter: public MeshAdapter<User> {

public:

  typedef typename InputTraits<User>::scalar_t scalar_t;
  typedef typename InputTraits<User>::lno_t    lno_t;
  typedef typename InputTraits<User>::gno_t    gno_t;
  typedef typename InputTraits<User>::part_t   part_t;
  typedef typename InputTraits<User>::node_t   node_t;
  typedef User user_t;
  typedef std::map<gno_t, gno_t> MapType;

  /*! \brief Constructor for mesh with identifiers but no coordinates or edges
   *  \param etype is the mesh entity type of the identifiers
   *
   *  The values pointed to the arguments must remain valid for the
   *  lifetime of this InputAdapter.
   */

  PamgenMeshAdapter(const Comm<int> &comm, std::string typestr="region",
		    int nEntWgts=0);

  /*! \brief Specify an index for which the weight should be
             the degree of the entity
   *    \paran idx Zoltan2 will use the entity's
   *         degree as the entity weight for index \c idx.
   */

  void setWeightIsDegree(int idx);

  void print(int);

  ////////////////////////////////////////////////////////////////
  // The MeshAdapter interface.
  // This is the interface that would be called by a model or a problem .
  ////////////////////////////////////////////////////////////////

  bool areEntityIDsUnique(MeshEntityType etype) const {
    return etype==MESH_REGION;
  }

  size_t getLocalNumOf(MeshEntityType etype) const
  {
    if ((MESH_REGION == etype && 3 == dimension_) ||
	(MESH_FACE == etype && 2 == dimension_)) {
      return num_elem_;
    }

    if (MESH_VERTEX == etype) {
      return num_nodes_;
    }

    return 0;
  }
   
  void getIDsViewOf(MeshEntityType etype, const gno_t *&Ids) const
  {
    if ((MESH_REGION == etype && 3 == dimension_) ||
	(MESH_FACE == etype && 2 == dimension_)) {
      Ids = element_num_map_;
    }

    else if (MESH_VERTEX == etype) {
      Ids = node_num_map_;
    }

    else Ids = NULL;
  }
  
  void getTopologyViewOf(MeshEntityType etype,
			 enum EntityTopologyType const *&Types) const {
    if ((MESH_REGION == etype && 3 == dimension_) ||
	(MESH_FACE == etype && 2 == dimension_)) {
      Types = elemTopology;
    }

    else if (MESH_VERTEX == etype) {
      Types = nodeTopology;
    }

    else Types = NULL;
  }

  void getWeightsViewOf(MeshEntityType etype, const scalar_t *&weights,
			int &stride, int idx = 0) const
  {
    weights = NULL;
    stride = 0;
  }

  int getDimension() const { return dimension_; }

  void getCoordinatesViewOf(MeshEntityType etype, const scalar_t *&coords,
			    int &stride, int dim) const {
    if ((MESH_REGION == etype && 3 == dimension_) ||
	       (MESH_FACE == etype && 2 == dimension_)) {
      if (dim == 0) {
	coords = Acoords_;
      } else if (dim == 1) {
	coords = Acoords_ + num_elem_;
      } else if (dim == 2) {
	coords = Acoords_ + 2 * num_elem_;
      }
      stride = 1;
    } else if (MESH_REGION == etype && 2 == dimension_) {
      coords = NULL;
      stride = 0;
    } else if (MESH_VERTEX == etype) {
      if (dim == 0) {
	coords = coords_;
      } else if (dim == 1) {
	coords = coords_ + num_nodes_;
      } else if (dim == 2) {
	coords = coords_ + 2 * num_nodes_;
      }
      stride = 1;
    } else {
      coords = NULL;
      stride = 0;
      Z2_THROW_NOT_IMPLEMENTED
    }
  }

  bool availAdjs(MeshEntityType source, MeshEntityType target) const {
    if ((MESH_REGION == source && MESH_VERTEX == target && 3 == dimension_) ||
	(MESH_FACE == source && MESH_VERTEX == target && 2 == dimension_) ||
	(MESH_VERTEX == source && MESH_REGION == target && 3 == dimension_) ||
	(MESH_VERTEX == source && MESH_FACE == target && 2 == dimension_)) {
      return TRUE;
    }

    return false;
  }

  size_t getLocalNumAdjs(MeshEntityType source, MeshEntityType target) const
  {
    if ((MESH_REGION == source && MESH_VERTEX == target && 3 == dimension_) ||
	(MESH_FACE == source && MESH_VERTEX == target && 2 == dimension_)) {
      return tnoct_;
    }

    if ((MESH_VERTEX == source && MESH_REGION == target && 3 == dimension_) ||
	(MESH_VERTEX == source && MESH_FACE == target && 2 == dimension_)) {
      return telct_;
    }
    
    return 0;
  }

  void getAdjsView(MeshEntityType source, MeshEntityType target,
		   const lno_t *&offsets, const gno_t *& adjacencyIds) const
  {
    if ((MESH_REGION == source && MESH_VERTEX == target && 3 == dimension_) ||
	(MESH_FACE == source && MESH_VERTEX == target && 2 == dimension_)) {
      offsets = elemOffsets_;
      adjacencyIds = elemToNode_;
    } else if ((MESH_REGION==target && MESH_VERTEX==source && 3==dimension_) ||
	       (MESH_FACE==target && MESH_VERTEX==source && 2==dimension_)) {
      offsets = nodeOffsets_;
      adjacencyIds = nodeToElem_;
    } else if (MESH_REGION == source && 2 == dimension_) {
      offsets = NULL;
      adjacencyIds = NULL;
    } else {
      offsets = NULL;
      adjacencyIds = NULL;
      Z2_THROW_NOT_IMPLEMENTED
    }
  }

  //#define USE_MESH_ADAPTER
#ifndef USE_MESH_ADAPTER
  bool avail2ndAdjs(MeshEntityType sourcetarget, MeshEntityType through) const
  {
    if (through == MESH_VERTEX) {
      if (sourcetarget == MESH_REGION && dimension_ == 3) return true;
      if (sourcetarget == MESH_FACE && dimension_ == 2) return true;
    }
    if (sourcetarget == MESH_VERTEX) {
      if (through == MESH_REGION && dimension_ == 3) return true;
      if (through == MESH_FACE && dimension_ == 2) return true;
    }
    return false;
  }

  size_t getLocalNum2ndAdjs(MeshEntityType sourcetarget, 
			    MeshEntityType through) const
  {
    if (through == MESH_VERTEX &&
	((sourcetarget == MESH_REGION && dimension_ == 3) ||
	 (sourcetarget == MESH_FACE && dimension_ == 2))) {
      return nEadj_;
    }

    if (sourcetarget == MESH_VERTEX &&
	((through == MESH_REGION && dimension_ == 3) ||
	 (through == MESH_FACE && dimension_ == 2))) {
      return nNadj_;
    }

    return 0;
  }

  void get2ndAdjsView(MeshEntityType sourcetarget, MeshEntityType through, 
		      const lno_t *&offsets, const gno_t *&adjacencyIds) const
  {
    if (through == MESH_VERTEX &&
	((sourcetarget == MESH_REGION && dimension_ == 3) ||
	 (sourcetarget == MESH_FACE && dimension_ == 2))) {
      offsets = eStart_;
      adjacencyIds = eAdj_;
    } else if (sourcetarget == MESH_VERTEX &&
	       ((through == MESH_REGION && dimension_ == 3) ||
		(through == MESH_FACE && dimension_ == 2))) {
      offsets = nStart_;
      adjacencyIds = nAdj_;
    } else {
      offsets = NULL;
      adjacencyIds = NULL;
      Z2_THROW_NOT_IMPLEMENTED
    }
  }
#endif

  bool useDegreeAsWeightOf(MeshEntityType etype, int idx) const
  {
    if ((MESH_REGION == etype && 3 == dimension_) ||
	(MESH_FACE == etype && 2 == dimension_) ||
	(MESH_VERTEX == etype)) {
      return entityDegreeWeight_[idx];
    }
    
    return false;
  }

private:
  int dimension_, num_nodes_global_, num_elems_global_, num_nodes_, num_elem_;
  gno_t *element_num_map_, *node_num_map_;
  gno_t *elemToNode_;
  lno_t tnoct_, *elemOffsets_;
  gno_t *nodeToElem_; 
  lno_t telct_, *nodeOffsets_;

  int nWeightsPerEntity_;
  bool *entityDegreeWeight_;

  scalar_t *coords_, *Acoords_;
  lno_t *eStart_, *nStart_;
  gno_t *eAdj_, *nAdj_;
  size_t nEadj_, nNadj_;
  EntityTopologyType* nodeTopology;
  EntityTopologyType* elemTopology;

};

////////////////////////////////////////////////////////////////
// Definitions
////////////////////////////////////////////////////////////////

template <typename User>
PamgenMeshAdapter<User>::PamgenMeshAdapter(const Comm<int> &comm,
					   std::string typestr, int nEntWgts):
  dimension_(0), nWeightsPerEntity_(nEntWgts), entityDegreeWeight_()
{
  using Teuchos::as;

  int error = 0;
  char title[100];
  int exoid = 0;
  int num_elem_blk, num_node_sets, num_side_sets;
  error += im_ex_get_init(exoid, title, &dimension_,
			  &num_nodes_, &num_elem_, &num_elem_blk,
			  &num_node_sets, &num_side_sets);

  if (typestr.compare("region") == 0) {
    if (dimension_ == 3)
      this->setEntityTypes(typestr, "vertex", "vertex");
    else
      // automatically downgrade primary entity if problem is only 2D
      this->setEntityTypes("face", "vertex", "vertex");
  }
  else if (typestr.compare("vertex") == 0) {
    if (dimension_ == 3)
      this->setEntityTypes(typestr, "region", "region");
    else 
      this->setEntityTypes(typestr, "face", "face");
  }
  else {
    Z2_THROW_NOT_IMPLEMENTED
  }

  coords_ = new scalar_t [num_nodes_ * dimension_];

  error += im_ex_get_coord(exoid, coords_, coords_ + num_nodes_,
			   coords_ + 2 * num_nodes_);
  
  element_num_map_ = new gno_t[num_elem_];
  std::vector<int> tmp;
  tmp.resize(num_elem_);
  
  // BDD cast to int did not always work!
  // error += im_ex_get_elem_num_map(exoid, (int *)element_num_map_)
  // This may be a case of calling the wrong method
  error += im_ex_get_elem_num_map(exoid, &tmp[0]);
  for(size_t i = 0; i < tmp.size(); i++)
    element_num_map_[i] = static_cast<gno_t>(tmp[i]);
    
  tmp.clear();
  tmp.resize(num_nodes_);
  node_num_map_ = new gno_t [num_nodes_];
  
  // BDD cast to int did not always work!
  // error += im_ex_get_node_num_map(exoid, (int *)node_num_map_);
  // This may be a case of calling the wrong method
  error += im_ex_get_node_num_map(exoid, &tmp[0]);
  for(size_t i = 0; i < tmp.size(); i++)
    node_num_map_[i] = static_cast<gno_t>(tmp[i]);
  
  nodeTopology = new enum EntityTopologyType[num_nodes_];
  for (int i=0;i<num_nodes_;i++)
    nodeTopology[i] = POINT;
  elemTopology = new enum EntityTopologyType[num_elem_];
  for (int i=0;i<num_elem_;i++) {
    if (dimension_==2)
      elemTopology[i] = QUADRILATERAL;
    else
      elemTopology[i] = HEXAHEDRON;
  }
  
  int *elem_blk_ids       = new int [num_elem_blk];
  error += im_ex_get_elem_blk_ids(exoid, elem_blk_ids);

  int *num_nodes_per_elem = new int [num_elem_blk];
  int *num_attr           = new int [num_elem_blk];
  int *num_elem_this_blk  = new int [num_elem_blk];
  char **elem_type        = new char * [num_elem_blk];
  int **connect           = new int * [num_elem_blk];

  for(int i = 0; i < num_elem_blk; i++){
    elem_type[i] = new char [MAX_STR_LENGTH + 1];
    error += im_ex_get_elem_block(exoid, elem_blk_ids[i], elem_type[i],
				  (int*)&(num_elem_this_blk[i]),
				  (int*)&(num_nodes_per_elem[i]),
				  (int*)&(num_attr[i]));
    delete[] elem_type[i];
  }

  delete[] elem_type;
  elem_type = NULL;
  delete[] num_attr;
  num_attr = NULL;
  Acoords_ = new scalar_t [num_elem_ * dimension_];
  int a = 0;
  std::vector<std::vector<gno_t> > sur_elem;
  sur_elem.resize(num_nodes_);

  for(int b = 0; b < num_elem_blk; b++) {
    connect[b] = new int [num_nodes_per_elem[b]*num_elem_this_blk[b]];
    error += im_ex_get_elem_conn(exoid, elem_blk_ids[b], connect[b]);

    for(int i = 0; i < num_elem_this_blk[b]; i++) {
      Acoords_[a] = 0;
      Acoords_[num_elem_ + a] = 0;

      if (3 == dimension_) {
	Acoords_[2 * num_elem_ + a] = 0;
      }

      for(int j = 0; j < num_nodes_per_elem[b]; j++) {
	int node = connect[b][i * num_nodes_per_elem[b] + j] - 1;
	Acoords_[a] += coords_[node];
	Acoords_[num_elem_ + a] += coords_[num_nodes_ + node];

	if(3 == dimension_) {
	  Acoords_[2 * num_elem_ + a] += coords_[2 * num_nodes_ + node];
	}

	/*
	 * in the case of degenerate elements, where a node can be
	 * entered into the connect table twice, need to check to
	 * make sure that this element is not already listed as
	 * surrounding this node
	 */
	if (sur_elem[node].empty() ||
	    element_num_map_[a] != sur_elem[node][sur_elem[node].size()-1]) {
	  /* Add the element to the list */
	  sur_elem[node].push_back(element_num_map_[a]);
	}
      }

      Acoords_[a] /= num_nodes_per_elem[b];
      Acoords_[num_elem_ + a] /= num_nodes_per_elem[b];

      if(3 == dimension_) {
	Acoords_[2 * num_elem_ + a] /= num_nodes_per_elem[b];
      }

      a++;
    }

  }

  delete[] elem_blk_ids;
  elem_blk_ids = NULL;
  int nnodes_per_elem = num_nodes_per_elem[0];
  elemToNode_ = new gno_t[num_elem_ * nnodes_per_elem];
  int telct = 0;
  elemOffsets_ = new lno_t [num_elem_+1];
  tnoct_ = 0;
  int **reconnect = new int * [num_elem_];
  size_t max_nsur = 0;

  for (int b = 0; b < num_elem_blk; b++) {
    for (int i = 0; i < num_elem_this_blk[b]; i++) {
      elemOffsets_[telct] = tnoct_;
      reconnect[telct] = new int [num_nodes_per_elem[b]];

      for (int j = 0; j < num_nodes_per_elem[b]; j++) {
	elemToNode_[tnoct_]= 
          as<gno_t>(node_num_map_[connect[b][i*num_nodes_per_elem[b] + j]-1]);
	reconnect[telct][j] = connect[b][i*num_nodes_per_elem[b] + j];
	++tnoct_;
      }

      ++telct;
    }
  }
  elemOffsets_[telct] = tnoct_;

  delete[] num_nodes_per_elem;
  num_nodes_per_elem = NULL;
  delete[] num_elem_this_blk;
  num_elem_this_blk = NULL;

  for(int b = 0; b < num_elem_blk; b++) {
    delete[] connect[b];
  }

  delete[] connect;
  connect = NULL;

  int max_side_nodes = nnodes_per_elem;
  int *side_nodes = new int [max_side_nodes];
  int *mirror_nodes = new int [max_side_nodes];

  /* Allocate memory necessary for the adjacency */
  eStart_ = new lno_t [num_elem_+1];
  nStart_ = new lno_t [num_nodes_+1];
  std::vector<int> eAdj;
  std::vector<int> nAdj;

  for (int i=0; i < max_side_nodes; i++) {
    side_nodes[i]=-999;
    mirror_nodes[i]=-999;
  }

  /* Find the adjacency for a nodal based decomposition */
  nEadj_ = 0;
  nNadj_ = 0;
  for(int ncnt=0; ncnt < num_nodes_; ncnt++) {
    if(sur_elem[ncnt].empty()) {
      std::cout << "WARNING: Node = " << ncnt+1 << " has no elements"
                << std::endl;
    } else {
      size_t nsur = sur_elem[ncnt].size();
      if (nsur > max_nsur)
	max_nsur = nsur;
    }
  }

  nodeToElem_ = new gno_t[num_nodes_ * max_nsur];
  nodeOffsets_ = new lno_t[num_nodes_+1];
  telct_ = 0;

  for (int ncnt = 0; ncnt < num_nodes_; ncnt++) {
    nodeOffsets_[ncnt] = telct_;
    nStart_[ncnt] = nNadj_;
    MapType nAdjMap;

    for (size_t i = 0; i < sur_elem[ncnt].size(); i++) {
      nodeToElem_[telct_] = sur_elem[ncnt][i];
      ++telct_;

#ifndef USE_MESH_ADAPTER
      for(int ecnt = 0; ecnt < num_elem_; ecnt++) {
	if (element_num_map_[ecnt] == sur_elem[ncnt][i]) {
	  for (int j = 0; j < nnodes_per_elem; j++) {
	    typename MapType::iterator iter =
	      nAdjMap.find(elemToNode_[elemOffsets_[ecnt]+j]);

	    if (node_num_map_[ncnt] != elemToNode_[elemOffsets_[ecnt]+j] &&
		iter == nAdjMap.end() ) {
	      nAdj.push_back(elemToNode_[elemOffsets_[ecnt]+j]);
	      nNadj_++;
	      nAdjMap.insert({elemToNode_[elemOffsets_[ecnt]+j],
		    elemToNode_[elemOffsets_[ecnt]+j]});
	    }
	  }

	  break;
	}
      }
#endif
    }

    nAdjMap.clear();
  }

  nodeOffsets_[num_nodes_] = telct_;
  nStart_[num_nodes_] = nNadj_;

  nAdj_ = new gno_t [nNadj_];

  for (size_t i=0; i < nNadj_; i++) {
    nAdj_[i] = as<gno_t>(nAdj[i]);
  }

  int nprocs = comm.getSize();
  //if (nprocs > 1) {
    int neid=0,num_elem_blks_global,num_node_sets_global,num_side_sets_global;
    error += im_ne_get_init_global(neid,&num_nodes_global_,&num_elems_global_,
				   &num_elem_blks_global,&num_node_sets_global,
				   &num_side_sets_global);

    int num_internal_nodes, num_border_nodes, num_external_nodes;
    int num_internal_elems, num_border_elems, num_node_cmaps, num_elem_cmaps;
    int proc = 0;
    error += im_ne_get_loadbal_param(neid, &num_internal_nodes,
				     &num_border_nodes, &num_external_nodes,
				     &num_internal_elems, &num_border_elems,
				     &num_node_cmaps, &num_elem_cmaps, proc);

    int *node_cmap_ids = new int [num_node_cmaps];
    int *node_cmap_node_cnts = new int [num_node_cmaps];
    int *elem_cmap_ids = new int [num_elem_cmaps];
    int *elem_cmap_elem_cnts = new int [num_elem_cmaps];
    error += im_ne_get_cmap_params(neid, node_cmap_ids, node_cmap_node_cnts,
				   elem_cmap_ids, elem_cmap_elem_cnts, proc);
    delete[] elem_cmap_ids;
    elem_cmap_ids = NULL;
    delete[] elem_cmap_elem_cnts;
    elem_cmap_elem_cnts = NULL;

    int **node_ids = new int * [num_node_cmaps];
    int **node_proc_ids = new int * [num_node_cmaps];
    for(int j = 0; j < num_node_cmaps; j++) {
      node_ids[j] = new int [node_cmap_node_cnts[j]];
      node_proc_ids[j] = new int [node_cmap_node_cnts[j]];
      error += im_ne_get_node_cmap(neid, node_cmap_ids[j], node_ids[j],
				   node_proc_ids[j], proc);
    }
    delete[] node_cmap_ids;
    node_cmap_ids = NULL;
    int *sendCount = new int [nprocs];
    int *recvCount = new int [nprocs];

    // Post receives
    RCP<CommRequest<int> >*requests=new RCP<CommRequest<int> >[num_node_cmaps];
    for (int cnt = 0, i = 0; i < num_node_cmaps; i++) {
      try {
	requests[cnt++] =
	  Teuchos::ireceive<int,int>(comm,
				     rcp(&(recvCount[node_proc_ids[i][0]]),
					 false),
				     node_proc_ids[i][0]);
      }
      Z2_FORWARD_EXCEPTIONS;
    }

    Teuchos::barrier<int>(comm);
    size_t totalsend = 0;

    for(int j = 0; j < num_node_cmaps; j++) {
      sendCount[node_proc_ids[j][0]] = 1;
      for(int i = 0; i < node_cmap_node_cnts[j]; i++) {
	sendCount[node_proc_ids[j][i]] += sur_elem[node_ids[j][i]-1].size()+2;
      }
      totalsend += sendCount[node_proc_ids[j][0]];
    }

    // Send data; can use readySend since receives are posted.
    for (int i = 0; i < num_node_cmaps; i++) {
      try {
	Teuchos::readySend<int,int>(comm, sendCount[node_proc_ids[i][0]],
				    node_proc_ids[i][0]);
      }
      Z2_FORWARD_EXCEPTIONS;
    }

    // Wait for messages to return.
    try {
      Teuchos::waitAll<int>(comm, arrayView(requests, num_node_cmaps));
    }
    Z2_FORWARD_EXCEPTIONS;

    delete [] requests;

    // Allocate the receive buffer.
    size_t totalrecv = 0;
    int maxMsg = 0;
    int nrecvranks = 0;
    for(int i = 0; i < num_node_cmaps; i++) {
      if (recvCount[node_proc_ids[i][0]] > 0) {
	totalrecv += recvCount[node_proc_ids[i][0]];
	nrecvranks++;
	if (recvCount[node_proc_ids[i][0]] > maxMsg)
	  maxMsg = recvCount[node_proc_ids[i][0]];
      }
    }

    gno_t *rbuf = NULL;
    if (totalrecv) rbuf = new gno_t[totalrecv];

    requests = new RCP<CommRequest<int> > [nrecvranks];

    // Error checking for memory and message size.
    int OK[2] = {1,1};
    // OK[0] -- true/false indicating whether each message size fits in an int
    //          (for MPI).
    // OK[1] -- true/false indicating whether memory allocs are OK
    int gOK[2]; // For global reduce of OK.

    if (size_t(maxMsg) * sizeof(int) > INT_MAX) OK[0] = false;
    if (totalrecv && !rbuf) OK[1] = 0;
    if (!requests) OK[1] = 0;

    // Post receives

    size_t offset = 0;

    if (OK[0] && OK[1]) {
      int rcnt = 0;
      for (int i = 0; i < num_node_cmaps; i++) {
	if (recvCount[node_proc_ids[i][0]]) {
	  try {
	    requests[rcnt++] =
	      Teuchos::
	      ireceive<int,gno_t>(comm,
				Teuchos::arcp(&rbuf[offset], 0,
					      recvCount[node_proc_ids[i][0]],
					      false),
				node_proc_ids[i][0]);
	  }
	  Z2_FORWARD_EXCEPTIONS;
	}
	offset += recvCount[node_proc_ids[i][0]];
      }
    }

    delete[] recvCount;

    // Use barrier for error checking
    Teuchos::reduceAll<int>(comm, Teuchos::REDUCE_MIN, 2, OK, gOK);
    if (!gOK[0] || !gOK[1]) {
      delete [] rbuf;
      delete [] requests;
      if (!gOK[0])
	throw std::runtime_error("Max single message length exceeded");
      else
	throw std::bad_alloc();
    }

    gno_t *sbuf = NULL;
    if (totalsend) sbuf = new gno_t[totalsend];
    a = 0;

    for(int j = 0; j < num_node_cmaps; j++) {
      sbuf[a++] = node_cmap_node_cnts[j];
      for(int i = 0; i < node_cmap_node_cnts[j]; i++) {
	sbuf[a++] = node_num_map_[node_ids[j][i]-1];
	sbuf[a++] = sur_elem[node_ids[j][i]-1].size();
	for(size_t ecnt=0; ecnt < sur_elem[node_ids[j][i]-1].size(); ecnt++) {
	  sbuf[a++] = sur_elem[node_ids[j][i]-1][ecnt];
	}
      }
    }

    delete[] node_cmap_node_cnts;
    node_cmap_node_cnts = NULL;

    for(int j = 0; j < num_node_cmaps; j++) {
      delete[] node_ids[j];
    }

    delete[] node_ids;
    node_ids = NULL;
    ArrayRCP<gno_t> sendBuf;

    if (totalsend)
      sendBuf = ArrayRCP<gno_t>(sbuf, 0, totalsend, true);
    else
      sendBuf = Teuchos::null;

    // Send data; can use readySend since receives are posted.
    offset = 0;
    for (int i = 0; i < num_node_cmaps; i++) {
      if (sendCount[node_proc_ids[i][0]]) {
	try{
	  Teuchos::readySend<int, gno_t>(comm,
		 Teuchos::arrayView(&sendBuf[offset],
				    sendCount[node_proc_ids[i][0]]),
 		 node_proc_ids[i][0]);
	}
	Z2_FORWARD_EXCEPTIONS;
      }
      offset += sendCount[node_proc_ids[i][0]];
    }

    for(int j = 0; j < num_node_cmaps; j++) {
      delete[] node_proc_ids[j];
    }

    delete[] node_proc_ids;
    node_proc_ids = NULL;
    delete[] sendCount;

    // Wait for messages to return.
    try{
      Teuchos::waitAll<int>(comm, Teuchos::arrayView(requests, nrecvranks));
    }
    Z2_FORWARD_EXCEPTIONS;

    delete[] requests;
    a = 0;

    for (int i = 0; i < num_node_cmaps; i++) {
      int num_nodes_this_processor = rbuf[a++];

      for (int j = 0; j < num_nodes_this_processor; j++) {
	int this_node = rbuf[a++];
	int num_elem_this_node = rbuf[a++];

	for (int ncnt = 0; ncnt < num_nodes_; ncnt++) {
	  if (node_num_map_[ncnt] == this_node) {
	    for (int ecnt = 0; ecnt < num_elem_this_node; ecnt++) {
	      sur_elem[ncnt].push_back(rbuf[a++]);
	    }

	    break;
	  }
	}
      }
    }

    delete[] rbuf;
    //}

#ifndef USE_MESH_ADAPTER
  for(int ecnt=0; ecnt < num_elem_; ecnt++) {
    eStart_[ecnt] = nEadj_;
    MapType eAdjMap;
    int nnodes = nnodes_per_elem;
    for(int ncnt=0; ncnt < nnodes; ncnt++) {
      int node = reconnect[ecnt][ncnt]-1;
      for(size_t i=0; i < sur_elem[node].size(); i++) {
	int entry = sur_elem[node][i];
	typename MapType::iterator iter = eAdjMap.find(entry);

	if(element_num_map_[ecnt] != entry &&
	   iter == eAdjMap.end()) {
	  eAdj.push_back(entry);
	  nEadj_++;
	  eAdjMap.insert({entry, entry});
	}
      }
    }

    eAdjMap.clear();
  }
#endif

  for(int b = 0; b < num_elem_; b++) {
    delete[] reconnect[b];
  }

  delete[] reconnect;
  reconnect = NULL;
  eStart_[num_elem_] = nEadj_;

  eAdj_ = new gno_t [nEadj_];

  for (size_t i=0; i < nEadj_; i++) {
    eAdj_[i] = as<gno_t>(eAdj[i]);
  }

  delete[] side_nodes;
  side_nodes = NULL;
  delete[] mirror_nodes;
  mirror_nodes = NULL;

  if (nWeightsPerEntity_ > 0) {
    entityDegreeWeight_ = new bool [nWeightsPerEntity_];
    for (int i=0; i < nWeightsPerEntity_; i++) {
      entityDegreeWeight_[i] = false;
    }
  }
}

////////////////////////////////////////////////////////////////////////////
template <typename User>
void PamgenMeshAdapter<User>::setWeightIsDegree(int idx)
{
  if (idx >= 0 && idx < nWeightsPerEntity_)
    entityDegreeWeight_[idx] = true;
  else
    std::cout << "WARNING:  invalid entity weight index, " << idx << ", ignored"
                << std::endl;
}

template <typename User>
void PamgenMeshAdapter<User>::print(int me)
{
  std::string fn(" PamgenMesh ");
  std::cout << me << fn
            << " dim = " << dimension_
            << " nodes = " << num_nodes_
            << " nelems = " << num_elem_
            << std::endl;

  for (int i = 0; i < num_elem_; i++) {
    std::cout << me << fn << i 
              << " Elem " << element_num_map_[i]
              << " Coords: ";
    for (int j = 0; j < dimension_; j++)
      std::cout << Acoords_[i + j * num_elem_] << " ";
    std::cout << std::endl;
  }

#ifndef USE_MESH_ADAPTER
  for (int i = 0; i < num_elem_; i++) {
    std::cout << me << fn << i 
              << " Elem " << element_num_map_[i]
              << " Graph: ";
    for (int j = eStart_[i]; j < eStart_[i+1]; j++)
      std::cout << eAdj_[j] << " ";
    std::cout << std::endl;
  }
#endif
}
  
}  //namespace Zoltan2
  
#endif